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Exact solution of the quasispecies model in a sharply peaked fitness landscape

Stefano Galluccio
Institut de Physique The´orique, Universite´ de Fribourg, Perolles, CH-1700, Fribourg, Switzerland

~Received 7 May 1997!

We reconsider Eigen’s quasispecies model for competing self-reproductive macromolecules in populations
characterized by a single-peaked fitness landscape. The use of ideas and tools borrowed from polymer theory
and statistical mechanics allows us to exactly solve the model for generic DNA lengthsd. The mathematical
shape of the quasispecies confined around the master sequence is perturbatively found in powers of 1/d at large
d. We rigorously prove the existence of the error-threshold phenomena and study the quasispecies formation in
the general context of critical phase transitions in physics. No sharp transitions exist at any finited, and at
d→` the transition is of first order. The typical rms amplitude of a quasispecies around the master sequence
is found to diverge algebraically with exponentn'51 at the transition to the delocalized phase in the limit
d→`. @S1063-651X~97!13709-6#

PACS number~s!: 87.10.1e, 64.60.Cn
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I. INTRODUCTION

In recent years there has been an increasing intere
theoretical physics with respect to new interesting pheno
ena for which the general approach of statistical mecha
has turned out to be extremely powerful. Typical examp
are represented by earthquake modelization@1#, forest-fire
propagation models@2#, financial systems and stock marke
dynamics@3#, portfolio theory@4#, and population dynamics
@5#.

In the large context of biological models of evolution, th
so-calledquasispecies model, as first introduced by Eigen
@6#, has to be considered the paradigm of all systems des
ing the dynamics of competing macromolecular organis
It mostly relies on Darwinian’s natural selection principle
the best suited general theory to explain the evolution
‘‘prebiotic’’ complex structures. In general it is believed th
this principle has not only guided species to their pres
level of evolution, but also acted at a molecular level in ord
to create the first living beings. The complexity of life as it
still represents a hard challenge for the scientists. The na
questions arising in this context are usually:~i! how is it
possible that among the huge number of possible~stable!
molecular structures, natural selection has chosen the
appropriate for the appearance of life on our planet?~ii ! Why
is this final state so stable and perfect despite the numbe
possible casual mutations that can occur during evolution
we count the number of different alternative DNA sequen
that one obtains by modifying a chain of given length, w
would discover that it is so huge that we are necessa
forced to admit that the majority of the chemical combin
tions has never been tested by natural evolution.

In this article we reexamine Eigen’s model in the simpl
formulation, with a sharply peaked fitness landscape o
lattice. By means of a mapping to an equilibrium proble
we solve the model under very general assumptions, and
discuss the consequences of our results in more realistic
ations.

The remainder of this paper is organized as follows.
Secs. II and III we give a short survey of the quasispec
model as first formulated by Eigen and co-workers. Secti
561063-651X/97/56~4!/4526~14!/$10.00
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IV and V are devoted to the introduction of our simplifie
lattice model. More specifically, we will show how th
Eigen’s equations can be mapped into the statistical mec
ics of directed polymers in a random medium. In Sec. VI
introduce the effective transfer matrix associated to the s
tem. It will be used to get some preliminary analytical r
sults. Sections VII and VIII contain the basic ingredien
towards a full solution of the problem: the dual space meth
and the characterization of the error-threshold phenome
as a thermodynamic phase transition. Finally, in Sec. IX,
get the complete solution of the model after summation
the associated partition function. The critical properties at
error threshold are calculated. A survey of the main res
and a comparison with previous approaches are finally s
marized in Sec. X.

II. THE QUASISPECIES MODEL

In order to look for a mathematical transcription of Da
winian theory we must first resume the basic statement
natural selection.~i! Life came about through evolution;~ii !
evolution is the result of mutations for thermodynamic sy
tems out of equilibrium;~iii ! mutations are due to incorrec
reproductions or errors during the process.

The selective principle, sometimes called ‘‘survival of th
fittest,’’ is actually opposed to coexistence among individ
als. Even though the fitness landscape had strong fluc
tions, evolution would not proceed very far if it were bas
on correlations among species instead of competition. W
out a true competition for life, evolution would have need
a much larger time~perhaps larger than the life of the Un
verse! to explore the advantageous mutations among
huge number of different choices in the fitness landscap

Darwinian principle is nothing but a sort of determinist
process of selection of the fittest individuals with the impli
assumption that an advantageous mutant can occurby
chanceduring reproduction. This is, however, not the who
story. As demonstrated by Eigen and co-workers in th
famous work on macromolecular evolution@6#, some guid-
ance principle towards the advantageous mutants does e
as fitter DNA chains have a greater chance to appear tha
4526 © 1997 The American Physical Society
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56 4527EXACT SOLUTION OF THE QUASISPECIES MODEL IN . . .
disadvantageous ones. In Darwinian models evolution
guided towards the peaks of the fitness landscape, tha
even though no correlation exists between a mutation and
fitness of the resulting mutant, there is a tendency provi
by the fact that the distribution of mutants is fitness dep
dent and~statistically! not all mutations have the same pro
ability to occur.

We say that two mutants belong to the same quasispe
~see discussion below! if at each position of the DNA chain
the found symbol is the prevailing one. In a virus chain, 14

single position errors can be present. If their probability
uniform, the wild-type sequence would be, on average, ex
with a probability of about 0.9999. In other words, at ea
site of a DNA chain one could find the same nucleotide
averaging among all the individuals of a given group with
error of the order;1025, even though each mutant can ha
its own sequence, which is different from those of the othe
The target of the selection is therefore not a single in
vidual, but a set of mutants whose DNA chain is close, in
statistical sense above defined, to that of a wild-type
quence.

Let us now introduce Eigen’s model. Imagine that ea
individual is defined by a DNA chain and consider all ind
viduals having a chain of the same lengthd. For each site of
the chain in the primary structure, we can havek different
nucleotides, which appear in a random manner. In a DNA
RNA structure they can be of four different types (G, A, C,
U). Alternatively, to simplify the problem, we can decide
distinguish only among purines (R) and pyrimidines (Y); in
the latter case we assumek52. The total number of possibl
sequences of purines and pyrimidines is given byM52d,
and results in an extremely large number of choices. A sin
ribosomal RNA~for which d5120) is one of 1072 possibili-
ties, and a viral genome~typically d;5000) is one of among
the M;103000 alternative sequences. For more comp
forms of life this number increases wildly and one can a
preciate the order of magnitude of the typical numbers
volved in the system. In the statistical mechanics langua
these systems must be represented in a discrete phase

with volume of the order of 10104,5
.

In order to mathematically define affinity among individ
als, we need a quantitative measure suitable for mathema
description. This can be achieved by introducing theHam-
ming distance DH . It is defined as follows: given two indi
vidualsI i andI j , each having its own sequence of lengthd,
their Hamming distance is given by the number of differe
positions that are occupied by different basis (G, A, C or U).
Two individuals having a smallerDH than another couple
are also more biologically affine.

A correct classification of mutants according to th
Hamming distance requires a space of dimensiond in which
each dimension consists ofk sites. Mathematically, the con
figuration spaceV is a d-dimensional hypercubic lattice in
which each side containsk identical sites. In the simples
case of only two kinds of bases (k52) each site has a 1-to-
correspondence with binary sequences. Therefore each
of V represents a given wild type and its neighbors repres
the mutants with closest biological affinity. We assign
each sitexPV a variable, or discrete fieldZ(x), giving the
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relative concentration of wild-types of kindx in the total
population.

The topological structure ofV has interesting properties
By increasing the dimensiond, the number of different ways
by which two points inV at distanceL can be connected
increases much faster~asL!) than the number of points hav
ing that distance, whose number goes as 2L. This has the
effect that, if d is large, an enormous number of sites a
confined among them with a relative small Hamming d
tance. Biologically this means that in the ‘‘genome spac
V, even small mutations~e.g., one-basis error reproduction!
can explore, after a short time, a big region in the wh
accessible space, of total dimension 2d. Moreover, as the
number of different paths is of the orderL!, a given chain
can easily transform into another one by avoiding unfav
able ways~e.g., disadvantageous sites!.

Finally, in the very general situation, we must assign
each site inV a variable identifying the fitness of that give
sequence. This quantity must be a frozen variable; that is
value must be conserved during evolution, as it schem
cally represents the quality of reproduction of that particu
DNA sequence. From the mathematical point of view, t
fitness landscape is represented by a rough function and
fined by quenched random variables. This has the effec
rendering the solution of the model a very hard task, as in
spin glass problem@7#.

In his simpler formulation the sequences are se
reproductive; i.e., individuals reproduce themselves ase
ally, and mutants appear through mutations of their resp
tive parents. We then introduce a random variable w
uniform distribution in@0,1#, the copying fidelity qi . From
experimental observations, the typical values ofqi are very
close to 1; that is, the probability that a given reproducti
process creates a mutant different from the original paren
very small. From simple combinatorics we get that the pro
ability that successive consecutive mutations bring a
quenceI i to a differentI j ~whose reciprocal Hamming dis
tance isD) will be

QD5qdS 1/q21

k21 D D

. ~1!

The mutation matrixQ5(Qi ,i u i , j 51,2, . . . ,kd) has ele-
mentsQi , j giving the probability of mutation betweenI i and
I j . The reader should note that this approach allows for
ferent single-base mutations per time step.

Let us introduce the dynamics by considering the follo
ing hypothesis.~i! Sequences reproduce themselves in a c
stant fashion and, if any individual is present with conce
trationni(t), the rate of change of the population is given
ṅi(t). ~ii ! Sequences generate by asexual reproduction w
erroneous replication and the rate depends linearly on
relative concentration.

The most general natural evolution equation for the c
centrationsni(t) of the sequenceI i , will then be given by
@6#

ṅi~ t !5(
j 51

kd

Wi j nj~ t !, with Wi j 5Qi j Aj2d i j Di . ~2!
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4528 56STEFANO GALLUCCIO
In the above formula we have introduced the rate matrixW,
which contains both diagonal and off-diagonal terms.Ai are
autocatalytic amplification factors, that is, the relative ra
of replication of the individualI i . They equally describe the
fitness, as favorable DNA chains generate a higher numbe
offspring. The diagonal termsWii ( i 51, . . . ,kd) correspond
to reproduction processes involving perfect replication of
quences, while off-diagonal terms correspond to mutati
of the original ancestor. In order to maintain the total pop
lation constant, one has to take into account external c
straints causing the spontaneous death of individuals. T
can be simply achieved by summing to the diagonal te
the decay rate Di of I i ~counting the number of deaths p
unit time!. Its inverse is the average lifetime.

It is worth pointing out that bothAi andDi are ~in gen-
eral! quenched variables in the equations. Each wild-typeI i
is supposed having a given fitness and decay rate, fixe
external condition and by genetic information. These para
eters must be considered as ‘‘frozen’’ during evolution.

III. GUIDED EVOLUTION AND ERROR CATASTROPHE

Eigen and co-workers were able to show that this sim
fied level of description is indeed well defined if the conce
trations ni(t) are not too high, and the replication rat
dni(t)/dt linearly depend on the concentrations themselv
At higher densities, the solution saturates and the creatio
new templates happens in more complex forms~for a review
see@6#!. Even taking into account these effects, the propo
model can be shown to stay valid at a qualitative level
description, as the system still has rates that linearly dep
~in average! on the concentrations. There are, however, s
ations in which a linear model cannot describe the ac
reproduction mechanisms. A virus can, for instance, rep
duce in the early stages of an incoming infection at mu
higher rates than those described by Eigen’s linear mod

We are now ready for a deeper investigation of t
Eigen’s model. To this aim it is advantageous to introduc
rescaled quantity

xi~ t !5
ni~ t !

(
j 51

kd

nj~ t !

, ~3!

which represents the fractional population variable. In
complete form we should add to Eq.~2! a term that takes into
account changes in the population caused by transpor
fects. To this aim one usually introduces a general ‘‘flu
termf(t) to fix a restriction on the total number of individu
als. We can thus write the kinetic equations as

ẋi~ t !5(
j Þ i

Wi j xj~ t !2f~ t !xi~ t !. ~4!

If one neglectsf(t), the above equation simplifies into
high-dimensional linear differential system whose matrixW
is diagonalizable. As, moreover,W is definite positive,
Frobenius theorem applies, that is, the maximum~or domi-
nant! eigenvaluel0 is positive and nondegenerate, and ha
corresponding positive eigenvector. It gives the net prod
s
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tion rate of sequences in the stationary state, and the co
sponding~positive! eigenvector (x1 ,x2 , . . . ,xN) is associ-
ated to the relative concentrations of individuals in the to
of the population. Formally, the full stationary solution is
superposition of uncoupled modes and in the limit of lar
times the evolution is associated to the eigenvector co
sponding tol0.

It can be shown that the average eigenvaluel(t) acts as a

threshold: modes corresponding tol i.l(t )̄ grow indefi-

nitely during evolution, while modes withl i,l(t )̄ die out.
Each normal mode corresponds, in the original variab
xi(t), to a set of sequences~or a ‘‘clan’’ ! with high biologi-
cal affinity. A clan is uniquely defined by an eigenvector a
its associated eigenvalue. It competes for selection with
other clans and the target of evolution is the group cor
sponding tol0. If viewed in the original space, a clan i
represented by a set of sequences distributed around the
corresponding to the largest diagonal termWii , which will be
called themaster sequence~MS!. The mutants of the MS are
grouped around it in such a way that only their averag
sequence equals that of the MS itself, which will be thoug
of as the most abundant individual in the set~though vari-
ances can be very large around the MS!. This set is called
quasispecies.

The picture that emerges from the above consideration
that of a huge number of individuals transforming into o
another during evolution. After some time all individua
will be found to be close to a limited number of MSs, as le
favorable ones have already died out. The characteristic t
necessary to reach a unique MS starting from a flat distri
tion in the space of sequences is not infinite, despite
enormous number of sites in the system. This is due,
previously pointed out, to the topological structure ofV, in
which points very far apart can be reached in few steps
are linked to each other by a tight network of different pat
As a consequence, a given sequence will almost certa
find a more favorable region in the rugged landscape by p
forming a walk inV that avoids passing through high pote
tial barriers where it would stay pinned for a long time.

This principle of guided evolutiondepends on the off-
diagonal terms of the matrixW. If they are zero, no muta
tions occur and the global population is stationary. If they
too big with with respect to the diagonal termsWAA , the
‘‘diffusion’’ in V is overenhanced and the stationary state
dominated by a random creation and annihilation of all
quences. In this situation the typical spatial amplitude o
quasispecies becomes of the same order ofd and no MS can
be uniquely defined. We would reach the same final stat
the fitness landscape would be flat, i.e.,Ai5const; i . As a
consequence, we deduce that a critical value of the error
qc may exist such that ifq,qc the class of sequences cla
sified as fittest becomes so large that it cannot be sample
any biological population.

This phenomenon was indeed shown to exist for a la
variety of fitness landscapes@6# and it is now well accepted
as the intrinsic and outstanding feature of the quasispe
model. A rough estimate ofqc ~usually callederror thresh-
old! can be achieved by noting that in order for a giv
sequenceI i to be competitive with other mutants, its exa
replication rateWii must be larger than the average produ
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56 4529EXACT SOLUTION OF THE QUASISPECIES MODEL IN . . .
tion rate of the mutantsĒ j Þ i . On this basis it is possible to
show @6# that the condition reads

Wii . Ē j Þ i5

(
j Þ i

Ej x̄ j

(
j Þ i

x̄ j

, ~5!

where x̄ j are the stationary relative concentrations of t
mutants. Since, by definition,Wii 5AiQ02Di andQ05qd is
the probability of exact replication, we find that the critic
threshold reads

Q0.
Ē j Þ i1Di

Ai
5

1

s
. ~6!

Hence it follows that, in order to have localization around t
MS, the length of the sequences must not exceed the cri
value

dmax52
lns

lnq
;

lns

12q
for 12q!1. ~7!

Once bothq ands are fixed, we have a strong restriction o
the maximum possible length, which allows selection to fi
the optimal MS. The above condition can be equally rew
ten in terms of the autocatalytic rate as

Ai.~ Ē j Þ i1Di !S 1

qD d

;ead. ~8!

The last inequality can be expressed by saying that in o
to maintain a given quasispecies stable around a MS
needs the corresponding selective advantage~or fitness! to
exceed a given threshold. What is surprising is the functio
dependence of this threshold on the length of the sequen
since typicallyd if the order of 103,4, the minimumAi re-
quested is enormous.

IV. TOWARDS A SOLVABLE MODEL OF EVOLUTION

A full complete solution of Eigen’s model is not achie
able by analytical methods, and despite past extensive w
@8–10#, no exact solutions are available in the literature.
important exception is represented by a slightly differe
model, introduced by Baakeet al. @11# in which one allows
mutation and selection to go on in parallel. That syste
whose links and differences with the original Eigen’s mod
were exhaustively discussed by the authors, can indee
mapped to a quantum system of lattice spins at equilibriu
This observation allows for analytical approaches for sev
representative fitness landscapes.

Another important result in this context was achieved
Leuthäusser@9#, who first showed the link between the qu
sispecies model and the statistical mechanics of lattice
face systems. In the last section we will come back to t
mapping, mainly in connection with the results of our wo

Our goal is to introduce a simplified version of Eigen
equations, which, although being well suited for analyti
approach, still retains the basic fundamental features of
general system. In particular we will consider a model
e
al
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discretized time, as in@9# and, after having exactly solve
the problem for generic sequence lengthsd, we will prove
that the transition from a localized quasispecies to a rand
distribution of individuals is equivalent to a first-order pha
transition. The mapping is based on the observation that
system allows a simple representation in terms of equi
rium statistical physics. Similar ideas were already int
duced in@9#, where the main idea was to map the ordina
differential equation~4! into a multidimensional Ising-like
spin system at equilibrium. However, due to the comp
form of the ‘‘effective’’ Hamiltonian resulting from the map
ping, which contains a complicated interaction term depe
ing on the selective advantagesAi , this approach is of very
poor utility, in practice. Tarazona@10# performed, on this
basis, a series of interesting computations with different
ness landscapes and found a rich resulting scenario.

Our idea is to introduce a different mapping of Eigen
equations to an equilibrium statistical system, which, in o
opinion, is simpler and more natural than the one used in@9#.
By means of this new mapping, in fact, we can directly rel
Eq. ~4! to a well-known problem in statistical mechanic
that is, directed polymers in random media~DPRM! @12#.
Due to the large amount of work done in this domain in t
past years@13#, a mapping to DPRM is important for man
reasons. First of all, the physics of DPRMs has applicati
in a large variety of physical phenomena, and it would be
least interesting to compare all these systems with the e
lutionary dynamics proposed by Eigen. On the other ha
due to the large amount of analytical and numerical wo
done in the directed polymers context, we have a solid ba
ground that can be used to understand, on a more rigo
basis, the physics behind the quasispecies model.

In particular, in this paper, we will concentrate on th
characterization of the error-threshold phenomenon a
phase transition, and the calculation of the critical expone
involved ~we will be restricted in this paper to considerin
the simplest, nontrivial scenario!. Anticipating future conclu-
sions, the error-threshold transition turns out to be equiva
to a depinning phase transition of a directed polymer b
bulk potential@13#. For the sake of completeness, in the la
section, we will discuss our results with respect to tho
obtained by previous approaches.

In order to introduce our model, we first formulate som
general hypotheses.~1! We consider sequences defined by
two-state basis~e.g.,Y andR); that is, we takek52. Each
sequence of lengthd is made of a combination of ‘‘0’’ and
‘‘1’’ bits and V is the unitary hypercubic lattice$0,1%d. ~2!
The fitness landscape is flat but one point~take the origin0)
has higher fitness. In other words we consider a sing
peaked distribution of selective advantages, by takingAi5b,
if V{xÞ0 andAi5a.b, if V{x50. ~3! The decay rates
are zero, i.e.,Di50, ; i 51,2, . . . ,kd. We have numerically
verified that this assumption does not affect our final conc
sions.~4! We consider evolution in discretized time. Eigen
model is ~formally! similar to a system of coupled maste
equations in the variablesxi(t) if we interpretxi(t) as the
‘‘probability to find a localized quasispecies around the M
I i at time t.’’ If we imagine considering the time as a mu
tiple of a small interval~or waiting time! t, i.e., t5Nt, we
can write that
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4530 56STEFANO GALLUCCIO
ẋi~Nt!5 lim
N→`

xi„~N11!t…2xi~Nt!

t

;
N@11

t
~ T̃i j 2d i j !xi~Nt!. ~9!

Usually t is simply related to the inverse of the transitio
probability per unit time in the continuous equation. T
above relation shows that, apart from the identity opera
d i j , the dynamics on the discrete time can be described
the repeated application of a 2d32d transfer matrix T̃i j with
i , j 51,2, . . . ,2d. ~5! In general, one should take into accou
multiple one-basis mutations per time stept. This is con-
tained in the original Eigen model as the rate matrixWi j has
all nonzero off-diagonal entries. Nevertheless, we will fo
mulate the hypothesis that the transfer matrixT̃i j can be
reduced to another matrixTi j , which allows only single-
basis mutation per time step. The reason is thatTi j has a
much simpler structure thanT̃i j , since almost all off-
diagonal elements are zero. We will prove below that us
the one-jump formulation of the system does not modify
physical picture that emerges from the model. In fact, allo
ing more than one mutation per time step corresponds
taking higher powers ofTi j , as one can easily see. All ou
results can be associated, however~see below!, to the behav-
ior of the set of eigenvectors of the transfer matrix, whi
does not depend on the power ofTi j we actually take into
account.

We finally note that, without loss of generality, one c
takeb51, apart from unimportant multiplicative factors.

V. THE MODEL

Let us consider ad-dimensional hypercubic unitary lattic
V5$0,1%d, representing the configuration space. For ma
ematical convenience, we will assume to have perio
boundary conditions in all directions, even though this h
pothesis is not essential to the physics of the problem. E
side of V is made of only two points representing bina
units. Each point ofV has a one-to-one correspondence t
sequenceI i ( i 51,uIu) since the cardinality ofI is equal to
the number of points ofV. We formulate the implicit hy-
pothesis that all individuals of the population have the sa
sequence lengthd.

On each sitexPV we have a variableZ(x) correspond-
ing to the relative concentration of individuals of wild-typ
I x . Equivalently, we can interpretZ(x) as the probability to
find the sequenceI x in the total of the population. At eac
time step a fractiontP@0,1# of the population of the sam
wild-type reproduces incorrectly and their sequences cha
one basis amongd and transform itself into a new set o
individuals I y . In our usual probabilistic interpretation,t
gives the probability that the MSI x transforms intoI y .

Since there ared bases for each sequence, the probabi
that a mutation takes place istd while 12td is the probabil-
ity of exact replication. In other words, 12td is the fraction
of the populationZ(x) that survives evolution. We need t
consider pairs (d,t) such thattd,1. This is not a limitation
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of our approach, in fact, even thoughd is usually very large,
we only study conditions in which the reproduction fidelity
very high, i.e.,t!1.

All sequences have the same fitnessb51, apart from the
origin 05(0,0, . . . ,0)having selective advantagea.1.

It is then simple to write down a recursive relation for th
relative concentrationsZN(x) at time N on the basis of the
above arguments:

ZN11~x!5@11~a21!dx,0W #S (
i 51

d

tZN~x1e~ i !!

1~12td!ZN~x!D , ~10!

where we have introduced the unitary vectorse( i ) as those
having a ‘‘1’’ bit as i th element ifx has a ‘‘0’’ in the same
position and vice versa. The above equation uniquely defi
the transfer matrixTi j asZN11(x)5TZN(x8).

The interpretation of the above relation is simple. At tim
N11, the fraction of individuals with sequenceI x is equal to
(12td) times the original concentrationZN(x) ~this corre-
sponds to the individuals who have not experienced any
tation!, plus the fraction of individuals with Hamming dis
tance equal to 1 respect tox who, after reproduction, have
mutated toI x . This fraction is given bytZN(x1e( i )). More-
over, we have chosen the origin as a favored sequence,
is, the population inx50 is amplified by a factora.1 with
respect to all others. This hypothesis is nothing but a sim
mathematical way to impose that asingleMS I 0 exists.

In this framework, the existence of a quasispecies cha
terized by a unique MS corresponding to (0,0, . . . ,0) de-
pends on its selective advantage with respect to other
quences, i.e., on the value ofa. We thus expect to find
quasispecies formation aroundI 0 if a is larger than a thresh
old ac .

Roughly speaking, this transition can be equally int
preted in a different context. Let us indeed consider a
rected elastic polymer~a line! wandering in V, directed
along the ‘‘time’’ axisN, and subjected to an attractive po
tential located at the origin0. If the potential is uniform inN,
the energy gain per time step located at the wall is2U. If we
introduce a vectorh( i )PV, we can use it to identify the
position of the polymer at each time stepi . The elasticity of
the polymer, in a discrete geometry, is usually described
restricting the one-step polymer fluctuations to be sma
than a fixed threshold. In the literature this constraint is u
ally called restricted solid-on-solid condition, and means t
uh( i )2h( i 21)u can be 0 or 1@13#.

In a continuous formulation, the polymer statistics is a
sociated to a restricted~i.e., with fixed extremes! partition
function ~here ‘‘s’’ is the continuous analog ofN)

Z~h,s!5E
h~0!50

h~s!5h
D@h8#expH 2bE

0

s

ds8Fn2 @]s8h8~s8!#2

1V~h8,s8!G J . ~11!

In general,V(h,s) is a random potential distributed accor
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ing to a given density~DPRM problem!. In the discrete for-
mulation, we introduce a Hamiltonian with short-range u
form interaction

HN~$h%~ i !!5(
i 51

N

~Juh~ i !2h~ i 21!u2Udh~ i !,0!, ~12!

as our potential is localized at the origin and is attracti
that is,V(h( i ),i )52Udh( i ),0 . The continuous partition func
tion then becomes a sum over all possible realizations of
restricted polymer between 0 andN @12#

ZN~x!5(
$h%

exp$2HN~$h%~ i !!/T%. ~13!

The above sum completely specifies the state of the p
mer at a given temperatureT, or equivalently, at a given
potential strengthU. By general considerations, we kno
that in the thermodynamic limit the polymer has a pha
transition from a localized into a delocalized state, depend
on T, or, equivalently, onU @13#. As we will discuss below,
this transition is perfectly defined only atd→`, as the car-
dinality of V is finite for every finited and thermodynamic
limit does not hold.

There exists an interesting mapping between Eige
model and the statistical mechanics of a directed polym
For instance, in our case, a simple look at the partition fu
tion ~13! shows that it is mathematically equivalent to t
concentrationZN(x), which identically satisfies the recursiv
relation ~10!, once we have introduced the definition
a5exp(U/T) and t5exp(2J/T). That is why we implicitly
used the same notation for the concentration of individu
and the polymer partition function.

As an example, let us suppose that for a given set$a,d,t%
the polymer is in the localized~delocalized! phase: this can
be equivalently expressed by saying that evolution bri
sequences preferentially close to~apart from! the master se-
quenceI 0 . Therefore the error threshold transition in th
self-reproductive model is reduced to a search for the crit
pinninga necessary to localize the directed polymer for fix
values ofd and t. The error catastrophe transition will the
be perfectly understood in the general context of thermo
namic phase transitions. Even though we will concentr
our study on the simplest case of a single peaked fitness,
worth mentioning that the same formalism applies in m
realistic situations, for which we are forced to conside
quenched bulk potential, as in Eq.~11!. Generally speaking
studying the dynamics of the quasispecies model turns ou
be not a simpler problem than DPRM.

VI. THE EFFECTIVE MATRIX

In order to calculate the partition sum~13!, we must first
solve a 2d32d eigenvalue problem associated to the trans
matrix T, ZN11(x)5TZN(x8).

As we are interested in the stationary state atN→`, we
do not need to find the whole spectrum ofT but its spectral
radius~i.e., the maximum eigenvalue! « as a function of the
free parameters$a,d,t%, only. « is the only significant con-
tribution to the free energy density~per unit length!
f 5 limN→`2 ln(H2TS)/bN. At large timesN, the action of
-
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T is dominated by the spectral radius«, that is,
ZN11(x);«ZN(x).

It is worth considering some simple mathematical p
liminaries that will be useful in the future. A straight inve
tigation of the transfer matrix shows that it is definite po
tive and irreducible, and then, as a consequence, the Pe
Frobenius theorem on finite matrices applies@14#: the
spectral radius is positive and nondegenerate, and co
sponds to a positive, unique, eigenvector.

Due to the high dimensionality of the system~recall that
typically d;103,4 in a virus sequence!, it is not convenient to
use this form of the matrix for numerical investigation.

To this aim, we observe that the system has a symm
with respect to any change of ‘‘1’’ and ‘‘0’’ bits in a given
sequence. In other words, if two pointsx andy of V have the
same Hamming distance from the MS (0,0, . . . ,0) they are
completely equivalent. The transfer matrix is in fact com
pletely invariant in this case under permutation of the t
points.

Therefore the partition function must be invariant und
rotations inV and we can restrict ourselves to study its rad
dependence only, i.e.,Z(x)5Z(uxu)5Z(n) where we have
definedn5DH(x,0). It is a simple combinatorial result tha
the number of points ofV with the same Hamming distanc
n from the origin is given byM5d!/ @(d2n)!n! #.

If we define a new vector asPN(n)5( uxu5nZN(x) we can
equally study our eigenvalue problem in terms of a n
transfer matrixS defined asPN11(n)5SPN(n). It can be
found by observing that

PN~n!5@11~a21!dx,0W #1S (
uxu5n

(
i 51

d

tZN~x1e~ i !!

1~12td! (
uxu5n

ZN~x!D , ~14!

where the last term in parentheses is simply given
(12td)PN(n). By definition, ZN(x1e( i )) is of the form
ZN(x) with uxu5n11 or uxu5n21. Hence, after some alge
bra, we find that

(
uxu5n

ZN~x1e~ i !!5~n11! (
uxu5n11

ZN~x1e~ i !!

1~d2n11! (
uxu5n21

ZN~x1e~ i !!.

~15!

By using this identity we can show that the recursion relat
for PN(n) reads

PN11~n!5@11~a21!dx,0W #@~12td!PN~n!

1t~n11!PN~n11!1~d2n11!PN~n21!#,

with

PN~n!50 for n.d. ~16!

We can then study the system by means of aneffective
(d11)3(d11) matrix S defined as
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S5S a~12td! at 0

td ~12td! 2t

� � �

2t ~12td! td

0 t ~12td!

D .

~17!

It is easy to see thatS andT are completely equivalent to ou
problem, since they have same spectral radius, as it turns
from very general results in group theory@15#. As an advan-
tage,S is certainly more suitable for numerical diagonaliz
tion respect toT.

What is more important, however, is that we can use
effective matrix to calculate some accurate upper and lo
bounds for«. This is a consequence of a theorem on positi
irreducible matrices: it states that the spectral radius«(A) of
a positive matrixA5ai j satisfies the inequalities

mini(
j

ai j <«~A!<maxi(
j

ai j ,

minj(
i

ai j <«~A!<maxj(
i

ai j .

In summary, we find that

«~S!>H 1 a<~12td!21

a~12td! a>~12td!21,
~18!

while the upper bound is estimated as

«~S!<5
cca~12td!1td a<

12~d22!t

12td

112t aPS 12~d22!t

12td
,

112t

12~d21!t G
a~12td1t ! aPS 112t

12~d21!t
,dG

a~12td!1td a.d.
~19!

The result is shown in Fig. 1 where the two curves cor
sponding to the upper«1(S) and lower bound«2(S) are
plotted~dashed lines!. From the above inequalities we imme
diately find some interesting results concerning our syst
ut

e
er
,

-

.

In fact we deduce that,;d finite, «.1 and that in the limit
d→` the spectral radius is bounded between two valu
converging to

«~S!→11 if a,
1

12td
,

«~S!→a~12td! if a.
1

12td
. ~20!

This result indicates thata5ac51/(12td) is the critical
value of the pinning we need to localize the polymer at
origin for any fixed set of parameters (T,J). It is intuitively
clear that, rigorously speaking, we cannot have a phase t
sition at finited, since finite is the cardinality ofV too. Only
in the limit d→` do the polymers have a finite probability t
completely delocalize from the defect; at any finite dime
sion it can wander up to a distance of the order ofd even at
N→`. Naively speaking, we can say that, at large~finite!
dimensions, and if the pinning strength is not big enough,
polymer is ‘‘rough’’ in the sense that it can visitall acces-
sible configuration space up to the maximum size allow
for that fixedd. On the other hand, in the ‘‘pinned’’ phase
the transversal localization lengthl within which the poly-
mer is confined to the origin is independent on the linear s
N and is always finite~even atd→`). The two different
behaviors take place at a given characteristic valueUc ~or
equivalentlyac) of the pinning potential. Later on we wil
further discuss this problem and its implications in the b
logical context.

It is worth noting that, from simple inspection of the e
fective matrix, one can also get some information about
distribution ~or concentration! of individuals in the configu-
ration space. This can be easily achieved by the knowle
of the eigenvector associated to the spectral radius«(S). We
consider the sum of its componentsmN5(n50

d PN(n), and
from the above iterative relation forPN(n) have

FIG. 1. The maximum eigenvalue of the transfer matrixT plot-
ted vs the selective advantagea for d5100, t50.003. The full line
has been obtained by numerical diagonalization of the transfer
trix. Circles represent the analytical result@up to orderO(1/d3), see
Eq. ~41!#. The dashed lines are the upper and lower bounds fo«
obtained from the transfer matrix~see text!.
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mN115 (
n50

d

@~a21!dn,011#@~12td!PN~n!1t~n11!PN~n11!1t~d2n11!PN~n21!#

5~a21!@~12td!PN~0!1tPN~1!#1~12td! (
n50

d

PN~n!1t (
n50

d

~n11!PN~n11!

2t (
n50

d

~n21!PN~n21!1td(
n50

d

PN~n21!

5~a21!@~12td!PN~0!1tPN~1!#1 (
n50

d

PN~n!. ~21!
n
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lly

at
,
d
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Apart from a constant multiplicative~normalization! factor,
we find, in the thermodynamic limitN→`, that

m5
«

«21

a21

a
. ~22!

It is easy to prove that the inverse ofm gives ~apart from a
constant factor! the fraction of the population at the origi
@that is with MS equal to (0,0, . . . ,0)). Infact a simple cal-
culation shows thatm21}P(0)/(nP(n).

The dependence ofm on the pinning strengtha is de-
picted in Fig. 2 in a semilogarithmic scale. We see t
m;2d for a,ac , i.e., the fraction of individuals with MS
equal to0 is 22d. In other words, the origin is not, in thi
situation, a privileged site, as all individuals are equa
likely to be found inV. In the opposite situation, ata.ac ,
we see thatm is approximately given by 1. This means th
almost all of the population shares the same sequence
quasispecies is well defined, and evolution has reache
stationary state around the master sequence (0,0, . . . ,0). Re-
markably, the transition appears again to occur
ac5(12td)21.

VII. DUAL SPACE APPROACH

The direct investigation of the effective transfer mat
has given some insight into the physics of the problem

FIG. 2. ln@m(a)# is plotted vs the selective advantagea for
d5100, t50.003. At ac5(12td)21 the sharp jump indicates th
presence of a depinning transition~which is well defined only at
d→`, as explained in the text!. Numerical diagonalization: full
line. Analytical result: circles.
t

the
a

t

n

particular with respect to the origin of the phase transitio
The simplicity of our model fortunately allows an exact s
lution, which is, however, nontrivial, due to the high dime
sionality of the system.

To this aim we first need to simplify the transfer matrixT
by means of an appropriate transformation. As the system
defined onV5$0,1%d, we use a discretized transformation
achieve the result. We then introduce the following du
space representation of the partition sumZ(x):

ZN~x!5 (
k5$0,1%d

~21!x•kZN~k!, ~23!

and its inverse

ZN~k!5
1

2d (
x5$0,1%d

~21!x•kZN~x!. ~24!

The dual space is obviously identical toV and the Kronecker
delta is defined as 2ddx,05(kPV(21)x•k.

A rapid inspection shows that this representation imp
itly contains periodic boundary conditions in all direction
In the dual space the transfer matrixT reads

ZN11~k!5s~k!ZN~k!1
a21

2d (
q5$0,1%d

s~q!ZN~q!, ~25!

with s(q)5t( i 51
d (21)qi112td.

Our goal is then to solve a 2d-dimensional eigenvalue
problem for the dual transfer matrixT acting on the right-
hand side of the last equation. In the limitN→` the system
reaches a stationary state and in this regimeT is dominated
by its spectral radius«. We can then write that in the ther
modynamic limitZN11(k)5«ZN(k)5«Z(k), and

Z~k!5
a21

2d

1

«2s~k!(q
Z~q!s~q!. ~26!

Let us focus, for the moment, on the computation of«, and
define a new constantQ5(kPVs(k)Z(k). By multiplying
both sides bys(k), and summing overk, we finally arrive at
the equation for«:
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a21

2d (
k5$0,1%d

s~k!

«2s~k!
~27!

or

a

a21
5

1

2d (
k5$0,1%d

«

«2s~k!
. ~28!

It is clear that any attempt to directly calculate the su
appearing in the above formula is a very hard task, and
are forced to rely on different approaches. First of all we n
that, since s(k) can take values of kind 122nt ~with
n51,2, . . . ,d) in d!/ @n!(d2n)! # different ways, we can
recast the sum as follows:

a

a21
5

1

2d (
n50

d S d

nD «

«2112nt
. ~29!

Despite the simplification, the last expression is still too d
ficult to solve exactly, nevertheless it can be used to st
the structure of the eigenvalues of the transfer matrix. In f
the rhs of the above equation hasd11 singular points in
«5122nt, the largest of which is located at«51. For each
interval between any two singular points, Eq.~29! behaves as
a continuous function of« and it is monotonically decreas
ing, and then invertible. The solutions to the above equa
are given by the intersections of this function with the ho
zontal linea/(a21). There ared11 intersections, each o
them corresponding to one eigenvalue of the transfer ma
As the largest singular point is located at«51, we have a
unique eigenvalue larger than 1, and it corresponds to
spectral radius ofT. We then concentrate, in what follows
on the solution of Eq.~27! with the restriction«.1, disre-
garding all other roots. It is worth noting that in one simp
case the sum can be explicitly performed. In fact if we ta
«5112t, the sum reads

(
n50

d S d

nD 1

11n
5

2d1121

d11
, ~30!

and Eq.~29! can be solved fora giving

a511
2t~d11!

~112t !~2222d!22t~d11!
. ~31!

Above we have anticipated that no sharp phase transition
occur at any finited. In performing the limitd→` we must
be sure thatt goes to 0 at least linearly in 1/d in order to
preserve the probabilistic interpretation of the system~recall
that tdP@0,1#). If, for instance, we approach the critica
state on the manifold«5112t, that is,«→1 linearly in t,
we have, from Eq.~31!, that a→ac51/(12td). This again
proves that, at least on the above manifold, (12td)21 is the
critical selective advantage separating the two phases.

VIII. THE EXACT SOLUTION

Let us consider the eigenvalue equation~28!. The idea is
to introduce a new representation to simplify the formu
The final result must be expressed in implicit integral for
e
e

-
y
t,

n
-

x.

e

e

an

.
.

By using a Feynman-like representation, we have

(
k5$0,1%d

«

«2s~k!
5

1

A (
kPV

S 12
1

A«
t(
i 51

d

~21!ki D 21

5
1

AE0

`

duF~u,t,«,A!, ~32!

with A5(«211td)/«, and

F~u,t,«,A!5 (
kPV

expFuS 1

A«
t(
i 51

d

~21!ki21D G . ~33!

By noting that the sum in the exponent easily factorizes,
get

(
kPV

expS u

A«
t(
i 51

d

~21!ki D 5F2coshS ut

A« D Gd

, ~34!

and therefore, after a change of variable in the integral,
eigenvalue equation takes the form

a

a21
5«E

0

`

e2~«211td!u@cosh~ut!#ddu. ~35!

A few remarks are important at this point on the mean
and validity of the above expression. It represents, for e
fixed set of parameters (T,J,d), an integral implicit relation
between« and a. Nevertheless, it is not equivalent to th
original series solution~28! of the spectrum ofT since in the
above procedure we have implicitly assumed that the inte
representation was mathematically well defined. In orde
do this, we must require that the integral~32! converges.
This is indeed the case if and only if( i 51

t d(21)ki,A«, or
equivalently, if «.1. If «<1 the integral diverges and n
real solutions to the above equation can be found. As a c
sequence, we can use Eq.~35! to calculate the spectrum ofT
corresponding to eigenvalues.1. From the previous argu
ment, we know that there exists a unique eigenvalue lar
than 1, and it corresponds to the spectral radius. In con
sion, the unique real solution in« of Eq. ~35! is the spectral
radius of the transfer matrix. Moreover, since the integ
diverges at«51, when the attractive potential at the origin
omitted ~i.e., a51), the maximum eigenvalue must be un
tary too. Then the free energy densityf vanishes and we
attain a delocalized phase, as expected.

The implicit integral can be expressed in terms of kno
mathematical functions. After successive integrations
parts we have that@hered5(«21)/t#

1

«

a

a21
5

1

tdS 12
d

d12H 12
d21

d14F12•••2
2

d12d22

3S 12
1

d12dD ••• G J D , ~36!

and recalling the definition of the hypergeometric series
negative argument@16#
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F~2m,b;c,z!5 (
n50

m
~2m!n~b!n

~c!n

zn

n!
, ~37!

with (a)n5a(a11)•••(a1n21), we finally arrive at the
result that

a

a21

«21

«
5FS 2d,1;

«21

2t
11,

1

2D . ~38!

We immediately deduce that@recall definition ~22!#
m215F„2d,1;(«21)/2t11,1/2….

Let us defineI (d;«,t) the integral in Eq.~35!. I (d;«,t) is
a monotonic decreasing function ofd. This result can be
easily proved by using the integral representation of the
pergeometric series. Physically we are interested in the
havior of the system at large dimensions, and in this reg
we can use a Laplace saddle-point approximation of the
tegral solution. A detailed analysis of the asymptotic dev
opment of I (d;«,t) at large d needs, however, particula
attention, since we should properly take into account
condition td<1. This means that both the limitsd→` and
t→0 must be performedsimultaneouslyin such a way that
a5td is constant. We are implicitly assuming thatt goes to
0 linearly in 1/d, but we would obtain the same final result
td→0 for d→`.

Let a be equal totd, a quantity that must be kept finit
during the calculation. We see thatI (d;«,t) can be written as
*0

`dug(u)exp@df(u)#, with

f ~u!5 ln@cosh~u!#2
«211a

a
u,

~39!

g~u!5
d

a
.

Since for «.1 the maximum ofg(u) is located at the
extreme of integrationu50, the integral can be well ap
proximated, at larged, by expanding in a McLaurin serie
the integrand. At first order in 1/d it reads

I;E
0

`

dug~0!exp@d~ f ~0!1 f 8~0!u!#5
1

«211a
.

~40!

More precisely, if we take into account higher powers a
the relative error, after some more algebra we arrive at
approximate result:

1

«

a

a21
5

1

«211td
1

~ td!2

d~«211td!3
1

3~ td!4

d2~«211td!5

1
1

d3F 15~ td!6

~«211td!7
2

2~ td!4

~«211td!5G1OS 1

d4D .

~41!

If we are interested in the unique real solution of t
above algebraic equation, Eq.~41! can be inverted for the
maximum«. The final solution, up to orderO(1/d3) reads,
for aP@1,̀ )
-
e-
e
-

l-

e

d
e

«5maxH 1,a~12td!1
1

d

a~ td!2

~a21!~12td!

1
1

d2

a~22a!~ td!4

~a21!3@12~ td!3#
1OS 1

d3D J , ~42!

since we know from the above arguments~from the effective
matrix! that the spectral radius cannot be less than 1 ifa.1.
This result can be finally compared with the exact calculat
performed by numerically finding the spectral radius ofT for
a given set of parameters$d,t,a%, and the two curves are
plotted in Fig. 1.

In the limit d→` we have

«~`!5max$1,a~12td!%, ~43!

a result that coincides with that obtained from the analy
we performed on the effective matrixS. Hence the critical
selective advantage for the MS (0,0, . . . ,0) tocreate a stable
quasispecies around it isac5(12td)21. In other words, as
we will clarify below, ac defines the error threshold for qua
sispecies formation. Alternatively, one can arrive at the sa
result on the basis of the convexity property ofI as a func-
tion of d, as shown in@17#. Figure 3 shows the critical di-
mensiondc as a function of the pinninga for two values of
t. The coincidence between Eq.~43! and the numerical resul
is remarkable.

IX. THE STATIONARY ‘‘GROUND STATE’’
EIGENVECTOR

In order to have a full solution of our system, we st
need to calculate the partition sum~13!, or more precisely,
the eigenvector corresponding to the maximum eigenva
we have studied in the previous paragraph. Therefore, le
go back to the recursion relation~25! in the dual space. Dis-
regarding, for the moment, the normalization condition,
haveZ(k)5Q(a21)22d/(«2s(k)). In the direct space, it
reads

FIG. 3. The critical dimensiondc plotted vsa for two distinct
values oft. Lower curve:t51022; upper curve:t51023. Full lines
represent the functiondc5t21(121/a) ~see text!. Circles and
squares: numerical data from the transfer matrix.
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Z~x!5Q
a21

2d (
kPV

~21!x•k
1

«2s~k!
. ~44!

The summation of the series appearing in the above form
can be done following the same general procedure as be
that is, at«.1 we have

(
k5$0,1%d

~21!x•k

«2s~k!
5 (

kPV
S 12

t

B(
i 51

d

~21!ki D 21

5
1

BE0

`

duG~u,x,t,B!, ~45!

with B5«211td and

G~u,x,t,B!5 (
kPV

~21!x•kexpFuS t

B(
i 51

d

~21!ki21D G .

~46!

With respect to the above case, we now have an additio
term in the sum overkPV. After factorization, we find that

(
kPV

~21!x•kexpS ut

B (
i 51

d

~21!ki D
5)

i 51

d

(
k50,1

~21!kxiexpS ~21!k
ut

B D . ~47!

In this form the formula is still too hard to allow a simp
summation, but a rapid inspection shows how to simplify
problem by taking into account the symmetries of the s
tem. In fact we know that the partition sum must be the sa
for any two points with equal Hamming distance from t
origin. Therefore we can concentrate on studying only
‘‘radial’’ function P(n) wheren is the Hamming distance
from (0,0, . . . ,0). In practice this observation allows us
neglect the order in which bits ‘‘1’’ and ‘‘0’’ appear in Eq
~47!. What is physically important is the number of bits
each kind that are contained in a given sequence of t
length d. If there aren bits of kind ‘‘1,’’ that is, if the
Hamming distance of the respective sequence isn, in the
product on the rhs of Eq.~47! will be presentn factors of
kind exp(ut/B)2exp(2ut/B)52sinh(ut/B) and d2n of kind
exp(ut/B)1exp(2ut/B)52cosh(ut/B). Finally, as the numbe
of ways we can arrangen bits ‘‘1’’ in the total of d bits in
d!/ @(d2n)!n! #, we can write that
la
re,

al

e
-
e

e

al

P~n!5Q~a21!S d

n
D E

0

`

due2~«211td!u

3@sinh~ut!#n@cosh~ut!#d2n. ~48!

The constantQ can be fixed by normalization, that is, if w
impose thatZ(x) be summable, we must require th
(n50

d P(n)51. The last calculation is easy to perform,
fact, (n50

d (n
d)@sinh(ut)#n@cosh(ut)#d2n5exp(utd) and thus, af-

ter integration, we get the result that(n50
d P(n)

5Q(a21)/(«21). The normalized solution reads

P~n!5~«21!S d

n
D

3E
0

`

due2~«211td!u@cosh~ut!#d@ tanh~ut!#n.

~49!

At genericd it is not possible to perform the above integra
which is convergent;«.1, but we can restrict ourselves t
study the form of the solution at large dimensions.

Since one may equally characterize the depinning ph
transition in terms ofU or a, we can study its order by
considering the discontinuities of the partition sum ina. At
d→` the maximum eigenvalue is defined by Eq.~43!. By
inserting this expression intoP(n) we simply find that the
partition sum is aC0 function in a, that is, the phase trans
tion is of first order. This is also clear if one looks at th
shape of ln(m), which can be considered a sort of ‘‘orde
parameter,’’ near the critical pointac ~see Fig. 2!. Moreover,
from very general arguments@13#, we expect that the typica
length j' within which the polymer is confined around th
potential, diverges at the critical point asj';ua2acu2n'

with a given characteristic exponent. In a sense, the varia
n appearing in Eq.~49! can be considered a sort of extern
control parameter for the system described by Eq.~44! at
equilibrium.

In order to calculate the critical exponentn' we can in-
troduce the generating functionG(l) associated toP(n), as

G~l!5^eln&5 (
n50

d

P~n!eln. ~50!

The various momentazm5^nm& can be calculated from
G(l) in the usual way:zm5]l

(m)G(l)ul50. In order to study
the behavior ofj' we need the knowledge of the fluctuation
of the polymer around the origin, and therefore we need
second cumulantm25z22z1

2. We thus calculate the con
nected generating function G(l)5 lnG(l), since
mm5]l

(m)G(l)ul50.
From the above exact formula, we can write that
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G~l!5~«21!E
0

`

duexp„2~«211td!u1dln$cosh~ut!@11Ktanh~ut!#%…

5~«21!
d

aE0

`

dxexpH dF ln$cosh~x!@11Ktanh~x!#%2
«211td

a
xG J , ~51!

whereK5el andx5ut. If we are interested in the larged behavior, the integral can be estimated by saddle-point meth
The function at the exponent is maximum inx50 if «.1, and then

G~l!.~«21!
d

aE0

`

dxexpH dF S K2
«211td

a D1
12K2

2
x2G J .~«21!F 1

«211a~12K !
1

~12K2!a2

@~«211a!/a2K#3

1

dG .

~52!
e

l

on

rm
th
t
h

b
a

th
in

ed
ie

nc-

.
as

that,

at
dle

l-

the
Corrections to the previous formula are of the orderO(1/d2).
By applying the definition ofG(l), we finally find that

m15
td

«21
2

2~ td!5

~«21!2

1

d
1OS 1

d2D ,

~53!

m25
~ td!2

~«21!2
2

2~ td!5~«2114td!

~«21!3

1

d
1OS 1

d2D .

As expected, the fluctuations around the average hav
power-law divergence at the critical point«51. Since «
goes to 1 linearly witha→ac , we deduce that the critica
exponent isn'51 at d→`.

It is also interesting to look at the shape of the partiti
function in n. From the biological point of view, it tells us
how mutants of a given MS are distributed around it to fo
a quasispecies. If we restrict ourselves, for simplicity, to
leading term in 1/d in Eq. ~52!, we must inverse transform i
to get the real space solution at first order. To simplify t
calculation, we assume thatl5 ih is a complex number, and
this allows us to write

P~1!~n!5~«21!E
2`

`

dhe2 ihn
1

«211td~12eih!
.

~54!

By analytic continuation in the complex plane,h5z be-
comes a complex variable and the resulting integral can
calculated by means of the residue theorem. The integr
has a simple pole atz* 52 i ln@11(«21)/(td)# and to apply
Cauchy’s lemma we must close the integration path in
semiplane Im$z%,0. After having calculated the residue
z* , we find that Res(z* )52 ia@11(«21)/a#2n21. Hence,

P~1!~n!5N
2p

td
~«21!S 11

«21

td D 2~n11!

5N
2p~«21!

«211td
expF2n lnS 11

«21

td D G , ~55!

whereN is a normalization factor. It can be easily calculat
by noting that the sum involves a truncated geometric ser
a

e

e

e
nd

e

s:

(
n50

d

P~1!~n!52p
«21

«211td

~12ad11!

12a
,

~56!

a215S 11
«21

td D .

The partition function shows an exponential decay as a fu
tion of n. The mass gap @13# is therefore given by
ln@11(«21)/a#.(«21)/a, close to the phase transition
Since the transversal correlation length is usually defined
the inverse of the mass gap, we again recover the result
at the critical point,n'51.

A more refined expression of the partition function
large d can be obtained by directly considering a sad
point approximation of Eq.~49!. Without entering into math-
ematical details~similar to those employed in previous ca
culations!, we see that the integral in Eq.~49! is dominated
by the region close tou* 50. By expanding the integrand
aroundu* and integrating term by term, we finally find

P~n!5~«21!S d

n
D S a

d~«211a! D
nF 1

«211a
G~n11!

1
a2

2d~«211a!3
G~n13!

1

d
1OS 1

d2D G . ~57!

In Fig. 4 we compare this approximate result~by only retain-

FIG. 4. Comparison between the two real-space forms of
solution P(n) at the first significant order in 1/d. The dashed and
the full lines correspond to Eqs.~55! and ~58!, respectively.



nc

t

,

ca

he
p
n

ha
by

e
it
to
a

e

o

te
a
n-

e
t

ite
the

,
ge,

ied
li-

ng-
the
.

t-
to

-

the

spin
y
er-
, as
e
t of
e
hat
he
is, in
soci-
nics
our
ics
eli-
n.
he
ess.
d in
of
n
re-
the

re
x-

4538 56STEFANO GALLUCCIO
ing the first term in parentheses! with P(1)(n) given by Eq.
~55!. The coincidence of the two curves is good up tod;n,
i.e., in the physical range~recall that by definitionn<d). In
fact it is possible to show that Eq.~57! is a monotonically
increasing function ofn for n@d, while the exact function is
always decreasing. The minimum of the approximating fu
tion is found indeed forn;d. More precisely, if we only
take the first term in Eq.~57!, a rapid inspection shows tha
it can be rewritten as

P~1!~n!5~«21!
d!

~d2n!!

a

d~«211a!S a

d~«211a! D
n

;N 8
~«21!

«211aS 11
«21

a D 2n

, ~58!

the last approximation being valid ifn!d. We then see that
apart from inessential factors, Eqs.~55! and ~58! give the
same result only ifn!d. At larger n, Eq. ~58! shows the
presence of power-law corrections in the exponential de
of the partition sum.

X. COMPARISON WITH PREVIOUS RESULTS
AND CONCLUSIONS

We are now in a position to compare our result with t
general approach by coming back to the usual ‘‘quasis
cies’’ notation. The copying fidelity in a given reproductio
process has been defined in our model by 12td, while in the
original work @6# it was indicated byqd @see also Eq.~7!#.
Therefore, the first result of our work has been to show t
the critical threshold for quasispecies formation is given

ac5
1

12td
5q2d, dc52

lna

lnq
, ~59!

which coincides with Eq.~8!.
Let us now discuss similarities and differences betwe

our mapping and the previous approaches. In the above c
work, Leuthäusser introduced a mapping of Eigen’s model
a system at equilibrium. Briefly, we describe the mapping
follows. Let us consider again Eq.~4! with discretized time
k, representing ‘‘generations’’of macromolecules. If we d
fine the vectorX(k)5„x1(k),x2(k), . . . ,x2d(k)…, represent-
ing the set of the relative concentrations of the macrom
ecules at timek, Eigen’s model can be easily rewritten as

X~k!5WkX~0!. ~60!

As in our case, the problem is then reduced to a linear sys
associated toW. This matrix, actually, can be thought of as
transfer matrix of an equilibrium system. In fact, if one co
siders only binary sequencesI j made, for instance, ofd Ising
spins (s1 ,s2 , . . . ,sd), the evolution of the system can b
represented in a square lattice geometry. One side of
-

y

e-

t

n
ed

s

-

l-

m

he

lattice~that composed of different rows! has a length equal to
that (d) of the sequences, while the other one is semi-infin
in one direction, as each column can be associated to
state of the system at timek. The final state, in this geometry
is therefore associated to the properties of the lattice ed
which indeed represents the state of the system afterN gen-
erations. If each site along the binary chain is exactly cop
with probability q, independently from other sites, the rep
cation matrix takes the form

Wi j 5Ajq
dS 12q

q D ~d2(k51
d sk

i sk
j
!/2

. ~61!

This represents a transfer matrix of a two-dimensional Isi
like system with nearest neighbors interactions along
‘‘time direction.’’ The Hamiltonian corresponding to Eq
~61! has, however, a very complicated mathematical form

2bH52 (
i 50

N21 Fb(
j 51

d

s j
i s j

i 111 lnA~ I i !G1
Nd

2
ln@q~12q!#,

~62!

Tarazona@10# numerically solved the system for various fi
ness landscapesAj , and discussed the results with respect
the original quasispecies model.

Apart from the intrinsic difficulty in solving problems de
scribed by Hamiltonians of the kind~62!, there is a subtle
problem contained in this formulation. The actual state of
system afterN generations dependsonly on the structure of
the layer at the edge of the square lattice, that is, on the
configurations at theNth column. Therefore, as one ma
expect, the error threshold transition cannot be fully und
stood in terms of the bulk properties on the square lattice
already pointed out in@10#. We thus need the complet
knowledge of the structure of the lattice surface, and no
the bulk, to solve the original Eigen’s model. With th
Leuthäusser mapping, there is no hope of accomplishing t
goal, in general. The fact that the critical properties of t
quasispecies model are associated to surface structures
a sense, conserved in our mapping, as we have also as
ated the error threshold problem to the statistical mecha
properties of an interfacelike object. On the other hand,
mapping to the directed polymers’ statistical mechan
seems to be more natural and able to better clarify the d
cate mechanisms involved in the error-threshold transitio

In conclusion, we have analyzed Eigen’s model in t
simplest situation characterized by a single-peaked fitn
The main issues of our exact solution can be summarize
three main points. First, we have proved that, in the limit
infinite sequence lengthsd, the error threshold phenomeno
is associated to a first-order critical phase transition. Mo
over, the typical amplitude of the quasispecies around
MS diverges with exponentn'51 at criticality. Numerical
simulations@10#, seem, however, to indicate that this pictu
no longer holds for more general situations. It would be e
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tremely interesting to use our mapping to investigate th
other cases as well. Finally, we have proved that the crit
selective advantage for quasispecies formation depends
ponentially on the sequence lengthd.

We believe that, even in more realistic situations,
which the fitness landscape is characterized by rough fl
ry
l.
e
al
ex-

c-

tuations from point to point, and with the help of the direct
polymers theory, the present study can be extended.
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