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Exact solution of the quasispecies model in a sharply peaked fithess landscape
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We reconsider Eigen’s quasispecies model for competing self-reproductive macromolecules in populations
characterized by a single-peaked fitness landscape. The use of ideas and tools borrowed from polymer theory
and statistical mechanics allows us to exactly solve the model for generic DNA leshgltiee mathematical
shape of the quasispecies confined around the master sequence is perturbatively found in podetdarye/

d. We rigorously prove the existence of the error-threshold phenomena and study the quasispecies formation in
the general context of critical phase transitions in physics. No sharp transitions exist at any, famite at

d—oo the transition is of first order. The typical rms amplitude of a quasispecies around the master sequence
is found to diverge algebraically with exponemt=1 at the transition to the delocalized phase in the limit
d—o. [S1063-651X%97)13709-9

PACS numbd(s): 87.10+¢€, 64.60.Cn

I. INTRODUCTION IV and V are devoted to the introduction of our simplified
lattice model. More specifically, we will show how the
In recent years there has been an increasing interest figen’s equations can be mapped into the statistical mechan-
theoretical physics with respect to new interesting phenomics of directed polymers in a random medium. In Sec. VI we
ena for which the general approach of statistical mechanickitroduce the effective transfer matrix associated to the sys-
has turned out to be extremely powerful. Typical examplegém. It will be used to get some preliminary analytical re-
are represented by earthquake mode"zaﬁbh forest-fire SUItS. Sections VII and VIIl contain the ba.S|C |ngred|ents
propagation mode|&]' financial Systems and stock markets towards a full solution of the pl’oblem: the dual space method
dynamics[:a], portfo"o theory[4:|, and popu|ation dynamics and the characterization of the error-threshold phenomenon
[5]. as a thermodynamic phase transition. Finally, in Sec. IX, we
In the large context of biological models of evolution, the g€t the complete solution of the model after summation of
so-calledquasispecies modehs first introduced by Eigen the associated partition function. The critical properties at the
[6], has to be considered the paradigm of all systems descrifftor threshold are calculated. A survey of the main results
ing the dynamics of competing macromolecular organismsand a comparison with previous approaches are finally sum-
It mostly relies on Darwinian’s natural selection principle asmarized in Sec. X.
the best suited general theory to explain the evolution of
“prebiotic” complex structures. In general it is believed that
this principle has not only guided species to their present
level of evolution, but also acted at a molecular level in order In order to look for a mathematical transcription of Dar-
to create the first living beings. The complexity of life as it is winian theory we must first resume the basic statements of
still represents a hard challenge for the scientists. The naturaltural selection(i) Life came about through evolutiofii)
questions arising in this context are usualfi: how is it  evolution is the result of mutations for thermodynamic sys-
possible that among the huge number of possistable  tems out of equilibrium{iii) mutations are due to incorrect
molecular structures, natural selection has chosen the onesproductions or errors during the process.
appropriate for the appearance of life on our plarigj2Vhy The selective principle, sometimes called “survival of the
is this final state so stable and perfect despite the number dittest,” is actually opposed to coexistence among individu-
possible casual mutations that can occur during evolution? lals. Even though the fithess landscape had strong fluctua-
we count the number of different alternative DNA sequencesions, evolution would not proceed very far if it were based
that one obtains by modifying a chain of given length, weon correlations among species instead of competition. With-
would discover that it is so huge that we are necessarilput a true competition for life, evolution would have needed
forced to admit that the majority of the chemical combina-a much larger timéperhaps larger than the life of the Uni-
tions has never been tested by natural evolution. versg to explore the advantageous mutations among the
In this article we reexamine Eigen’s model in the simplesthuge number of different choices in the fitness landscape.
formulation, with a sharply peaked fithess landscape on a Darwinian principle is nothing but a sort of deterministic
lattice. By means of a mapping to an equilibrium problem,process of selection of the fittest individuals with the implicit
we solve the model under very general assumptions, and wassumption that an advantageous mutant can obgur
discuss the consequences of our results in more realistic sitehanceduring reproduction. This is, however, not the whole
ations. story. As demonstrated by Eigen and co-workers in their
The remainder of this paper is organized as follows. Infamous work on macromolecular evolutipé], some guid-
Secs. Il and Il we give a short survey of the quasispeciegnce principle towards the advantageous mutants does exist,
model as first formulated by Eigen and co-workers. Sectiongs fitter DNA chains have a greater chance to appear than do

Il. THE QUASISPECIES MODEL
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disadvantageous ones. In Darwinian models evolution igelative concentration of wild-types of king in the total
guided towards the peaks of the fitness landscape, that ipopulation.
even though no correlation exists between a mutation and the The topological structure df has interesting properties.
fitness of the resulting mutant, there is a tendency provide®y increasing the dimensiath, the number of different ways
by the fact that the distribution of mutants is fitness depenby which two points inQ) at distancelL. can be connected
dent and(statistically not all mutations have the same prob- increases much fastéasL!) than the number of points hav-
ability to occur. ing that distance, whose number goes &s Phis has the
We say that two mutants belong to the same quasispeci&ffect that, ifd is large, an enormous number of sites are
(see discussion belgvif at each position of the DNA chain confined among them with a relative small Hamming dis-
the found symbol is the prevailing one. In a virus chairf 10 tance. Biologically this means that in the “genome space”
single position errors can be present. If their probability is{2. €ven small mutationg.g., one-basis error reproductions
uniform, the wild-type sequence would be, on average, exad@n explore, after a short time, a big region in the whole
with a probability of about 0.9999. In other words, at eachaccessible space, of total dimensiofi Moreover, as the
site of a DNA chain one could find the same nucleotide bynumber of different paths is of the ordet, a given chain
averaging among all the individuals of a given group with anC@n easily transft_)rm into another one by avoiding unfavor-
error of the order-10"°, even though each mutant can haveable_ Ways(_e.g., dlsadvantageou§ sw;s .
its own sequence, which is different from those of the others. Fma.lly,. in the very ge_nera_l slltuatlon,. we must assign to
The target of the selection is therefore not a single indi-each site irf) ?‘Va”ab.'e identifying the fltness. of that given
vidual, but a set of mutants whose DNA chain is close, in the e oS This quantity must t_)e a frozer_l vanabl_e, that is, s
- . A value must be conserved during evolution, as it schemati-
statistical sense above defined, to that of a wild-type Seéally represents the quality of reproduction of that particular
quence. _ . _ DNA sequence. From the mathematical point of view, the
_ Let us now introduce Eigen's model. Imagine that eachiness jandscape is represented by a rough function and de-
individual is defined by a DNA chain and consider all indi- fjneq by quenched random variables. This has the effect of

viduals having a chain of the same lengthFor each site of  rendering the solution of the model a very hard task, as in the
the chain in the primary structure, we can havelifferent  spin glass problerfi7].

nucleotides, which appear in a random manner. Ina DNA or |n his simpler formulation the sequences are self-
RNA structure they can be of four different typeS,(A, C,  reproductive; i.e., individuals reproduce themselves asexu-
U). Alternatively, to simplify the problem, we can decide to ally, and mutants appear through mutations of their respec-
distinguish only among purineRj and pyrimidines ¥); in  tive parents. We then introduce a random variable with
the latter case we assurke: 2. The total number of possible uniform distribution in[0,1], the copying fidelity g. From
sequences of purines and pyrimidines is givenNby=29,  experimental observations, the typical valuesjpfire very
and results in an extremely large number of choices. A singl€lose to 1; that is, the probability that a given reproduction
ribosomal RNA(for which d=120) is one of 1¢? possibili- ~ Process creates a mutant different from the original parent is
ties, and a viral genomiypically d~5000) is one of among Very small. From smple comblnatlorlcs we get that .the prob-
the M~10%°% alternative sequences. For more complexab'“ty that successive consecutive mutations bring a se-

forms of life this number increases wildly and one can ap-duenceli to a differentl; (whose reciprocal Hamming dis-

preciate the order of magnitude of the typical numbers in1ance isD) will be

volved in the system. In the statistical mechanics language,
in a di 1/g—1\°
these systems must be represented in a discrete phase space Qp=0° )
0=

with volume of the order of 16" k-1

In order to mathematically define affinity among individu-
als, we need a quantitative measure suitable for mathematickhe mutation matrixQ=(Q;;|i,j=1,2, ... k% has ele-
description. This can be achieved by introducing Hem-  mentsQ; ; giving the probability of mutation betwednand
ming distance [} . It is defined as follows: given two indi- |;. The reader should note that this approach allows for dif-
vidualsl; andl;, each having its own sequence of length ~ ferent single-base mutations per time step.
their Hamming distance is given by the number of different Let us introduce the dynamics by considering the follow-

positions that are occupied by different bagis @, C orU).  ing hypothesis(i) Sequences reproduce themselves in a con-
Two individuals having a smalleD,, than another couple stant fashion and, if any individual is present with concen-
are also more biologically affine. trationn;(t), the rate of change of the population is given by

A correct classification of mutants according to theirn;(t). (i) Sequences generate by asexual reproduction with
Hamming distance requires a space of dimensiagmwhich  erroneous replication and the rate depends linearly on the
each dimension consists kfsites. Mathematically, the con- relative concentration.
figuration spacd? is a d-dimensional hypercubic lattice in The most general natural evolution equation for the con-
which each side contains identical sites. In the simplest centrationsn;(t) of the sequence;, will then be given by
case of only two kinds of basek£ 2) each site has a 1-to-1 [6]
correspondence with binary sequences. Therefore each point
of Q) represents a given wild type and its neighbors represent kd
the mutants with closest biological affinity. We assign to h-(t):E W, ni(t), with W, =Q,;A—8D;. (2)
each sitexe ) a variable, or discrete fiel&(x), giving the R = T S



4528 STEFANO GALLUCCIO 56

In the above formula we have introduced the rate matfix  tion rate of sequences in the stationary state, and the corre-
which contains both diagonal and off-diagonal tertisare  sponding(positive) eigenvector X;,X,, . .. Xy) iS associ-
autocatalytic amplification factors, that is, the relative ratesated to the relative concentrations of individuals in the total
of replication of the individual; . They equally describe the of the population. Formally, the full stationary solution is a
fitness as favorable DNA chains generate a higher number ouperposition of uncoupled modes and in the limit of large

offspring. The diagonal term#/; (i=1, ... k) correspond  times the evolution is associated to the eigenvector corre-
to reproduction processes involving perfect replication of sesponding ton .

guences, while off-diagonal terms correspond to mutations It can be shown that the average eigenva@ acts as a
of the original ancestor. In order to maintain the total popu-

lation constant, one has to take into account external Cont-hreShOId: modes corresponding 1g>X(t) grow indefi-
straints causing the spontaneous death of individuals. Thigitely during evolution, while modes with; <\ (t) die out.
can be simply achieved by summing to the diagonal term&ach normal mode corresponds, in the original variables
the decay rate D of |; (counting the number of deaths per x;(t), to a set of sequencésr a “clan”) with high biologi-
unit time). Its inverse is the average lifetime. cal affinity. A clan is uniquely defined by an eigenvector and
It is worth pointing out that bott®\; and D; are(in gen- its associated eigenvalue. It competes for selection with all
era) quenched variables in the equations. Each wild-tiype other clans and the target of evolution is the group corre-
is supposed having a given fitness and decay rate, fixed bsponding to\,. If viewed in the original space, a clan is
external condition and by genetic information. These paramrepresented by a set of sequences distributed around the one
eters must be considered as “frozen” during evolution. corresponding to the largest diagonal té, which will be
called themaster sequend®MS). The mutants of the MS are
lll. GUIDED EVOLUTION AND ERROR CATASTROPHE grouped around it in such a way that only their averaged
) ~__sequence equals that of the MS itself, which will be thought
Eigen and co-workers were able to show that this simplihf 55 the most abundant individual in the ktough vari-
fied level of description is indeed well defined if the concen-gces can be very large around the )MShis set is called
trations n;(t) are not too high, and the replication rates gyasispecies
dni(t)/dt linearly depend on the concentrations themselves. The picture that emerges from the above considerations is
new templates happens in more complex foffos a review  another during evolution. After some time all individuals
see[6]). Even taking into account these effects, the proposedij| pe found to be close to a limited number of MSs, as less
model can be shown to stay valid at a qualitative level oftayorable ones have already died out. The characteristic time
description, as the system still has rates that linearly depengecessary to reach a unique MS starting from a flat distribu-
(in averagg on the concentrations. There are, however, sitution in the space of sequences is not infinite, despite the
ations in which a linear model cannot describe the actuabnormous number of sites in the system. This is due, as
reproduction mechanisms. A virus can, for instance, repropreviously pointed out, to the topological structure(®f in
duce in the early stages of an incoming infection at muchyhich points very far apart can be reached in few steps and
higher rates than those described by Eigen’s linear model. are jinked to each other by a tight network of different paths.
~We are now ready for a deeper investigation of theas a consequence, a given sequence will almost certainly
Eigen’s model. To this aim it is advantageous to introduce gind a more favorable region in the rugged landscape by per-

rescaled quantity forming a walk in() that avoids passing through high poten-
tial barriers where it would stay pinned for a long time.
() This principle ofguided evolutiondepends on the off-
Xi(t)= Kd ' ®) diagonal terms of the matri¥. If they are zero, no muta-
2 n;(t) tions occur and the global population is stationary. If they are
i=1 too big with with respect to the diagonal terridg,,, the

. . ) ) _ “diffusion” in Q) is overenhanced and the stationary state is
which represents the fractional population variable. In itsgominated by a random creation and annihilation of all se-

complete form we should add to E@) a term that takes into  gquences. In this situation the typical spatial amplitude of a
account changes in the population caused by transport efyasispecies becomes of the same ordet afid no MS can
fects. To this aim one usually introduces a general “flux” he yniquely defined. We would reach the same final state if
term ¢(t) to fix a restriction on the total number of individu- the fitness landscape would be flat, i&;,=constVi. As a

als. We can thus write the kinetic equations as consequence, we deduce that a critical value of the error rate
g, may exist such that if<q. the class of sequences clas-
(1) = 2 Wi (1) — ()X (1). (4) sified as flt_test becom(_as so large that it cannot be sampled by
el any biological population.

This phenomenon was indeed shown to exist for a large
If one neglectsg(t), the above equation simplifies into a variety of fitness landscapé6] and it is now well accepted
high-dimensional linear differential system whose matix ~ as the intrinsic and outstanding feature of the quasispecies
is diagonalizable. As, moreovelV is definite positive, model. A rough estimate af; (usually callederror thresh-
Frobenius theorem applies, that is, the maxim@ndomi-  old) can be achieved by noting that in order for a given
nand eigenvalue\, is positive and nondegenerate, and has ssequencd; to be competitive with other mutants, its exact
corresponding positive eigenvector. It gives the net producreplication rateéW;; must be larger than the average produc-
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tion rate of the mutantg, ;. On this basis it is possible to discretized time, as iii9] and, after having exactly solved

show([6] that the condition reads the problem for generic sequence lengthswe will prove
that the transition from a localized quasispecies to a random
2 EX. distribution of individuals is equivalent to a first-order phase
= transition. The mapping is based on the observation that the
Wi >Ejsji=—, (5)  system allows a simple representation in terms of equilib-
2 Xj rium statistical physics. Similar ideas were already intro-
I Eall

duced in[9], where the main idea was to map the ordinary
— . . . differential equation(4) into a multidimensional Ising-like
where x; are the stationary relative concentrations of the_ . S
spin system at equilibrium. However, due to the complex

mutants. Since, by definitioWy;; = A;Q,— D; andQ=q is » e S ;

the probability of exact replication, we find that the critical fqrm of the effectllve Ham|lt9n|an rgsultmg_from the map-

threshold reads ping, which contains a complicated interaction term depend-
ing on the selective advantag@s, this approach is of very

E_j#i_|_Di 1 poor utility, in practice. TarazonflQ] performed, on this

Qpy>——F—=—. (6) basis, a series of interesting computations with different fit-

A o . . .
! ness landscapes and found a rich resulting scenario.
Hence it follows that, in order to have localization around the Our idea is to introduce a different mapping of Eigen’'s

MS, the length of the sequences must not exceed the critic&quations to an equilibrium statistical system, which, in our

value opinion, is simpler and more natural than the one us¢8]in
By means of this new mapping, in fact, we can directly relate
d :_In_awln_o for 1—q<1 7) Eg. (4) to a well-known problem in statistical mechanics,
max Ing 1—g ' that is, directed polymers in random med@PRM) [12].

Due to the large amount of work done in this domain in the
Once bothg and o are fixed, we have a strong restriction on past year§13], a mapping to DPRM is important for many

the maximum possible length, which allows selection to findrea50ns. First of all, the physics of DPRMs has applications
the optimal MS. The above condition can be equally rewrit, 5 15146 variety of physical phenomena, and it would be at
ten in terms of the autocatalytic rate as least interesting to compare all these systems with the evo-
L 1\d lutionary dynamics proposed by Eigen. On the other hand,

Ai>(Ej4i+Dj) —) ~e?d, (8) due to the large amount of analytical and numerical work

q done in the directed polymers context, we have a solid back-

The last inequality can be expressed by saying that in orddgound that can be used to understand, on a more rigorous
to maintain a given quasispecies stable around a MS on?SiS, the physics behind the quasispecies model.

needs the corresponding selective advantagefitness to In part;culgr, in this paper, we will concentrate on the
exceed a given threshold. What is surprising is the functionafharacterization of the error-threshold phenomenon as a

dependence of this threshold on the length of the sequence%hase transition, and the calculation of the critical exponents
since typicallyd if the order of 164, the minimumA, re-  nvolved (we will be restricted in this paper to considering
quested is enormous. the simplest, nontrivial scenajicAnticipating future conclu-

sions, the error-threshold transition turns out to be equivalent
to a depinning phase transition of a directed polymer by a
bulk potential[13]. For the sake of completeness, in the last
A full complete solution of Eigen’s model is not achiev- section, we will discuss our results with respect to those
able by analytical methods, and despite past extensive worRbtained by previous approaches.
[8—10], no exact solutions are available in the literature. An  In order to introduce our model, we first formulate some
important exception is represented by a slightly differentgeneral hypothese€l) We consider sequences defined by a
model, introduced by Baaket al.[11] in which one allows two-state basige.g.,Y andR); that is, we takek=2. Each
mutation and selection to go on in parallel. That systemsequence of lengttl is made of a combination of “0” and
whose links and differences with the original Eigen’s model“1” bits and Q is the unitary hypercubic latticg0,1}%. (2)
were exhaustively discussed by the authors, can indeed Behe fitness landscape is flat but one pdiake the origin0)
mapped to a quantum system of lattice spins at equilibriumhas higher fitness. In other words we consider a single-
This observation allows for analytical approaches for severapeaked distribution of selective advantages, by takipgb,
representative fitness landscapes. if =x#0andA;=a>b, if >x=0. (3) The decay rates
Another important result in this context was achieved byare zero, i.e.p;=0,Vi=1,2, ... k% We have numerically
Leuthausser{9], who first showed the link between the qua- verified that this assumption does not affect our final conclu-
sispecies model and the statistical mechanics of lattice susions.(4) We consider evolution in discretized time. Eigen’s
face systems. In the last section we will come back to thisnodel is (formally) similar to a system of coupled master
mapping, mainly in connection with the results of our work. equations in the variableg(t) if we interpretx;(t) as the
Our goal is to introduce a simplified version of Eigen’s “probability to find a localized quasispecies around the MS
equations, which, although being well suited for analyticall; at timet.” If we imagine considering the time as a mul-
approach, still retains the basic fundamental features of thgple of a small intervalor waiting time 7, i.e.,t=Nr, we
general system. In particular we will consider a model incan write that

IV. TOWARDS A SOLVABLE MODEL OF EVOLUTION
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. C X(N+1)P)—x;(N7) of our approach, in fact, even thougdhs usually very large,
Xi(N7)= lim = we only study conditions in which the reproduction fidelity is
N—e very high, i.e.t<1.

All sequences have the same fitnéss1, apart from the
N>17 origir_I 0=(0,Q, e ,O)ha\(ing selective adv_antag»_l.
- _('-f”_ — 8% (N7). 9) It is then S|mple_to write down a recursive relation for the
relative concentrationgy(x) at timeN on the basis of the
above arguments:

Usually 7 is simply related to the inverse of the transition
probability per unit time in the continuous equation. The d _

above relation shows that, apart from the identity operator Znra(¥)=[1+(a- 1)5x,6](2 tZy(x+el)

gij ,» the dynamics on the discrete time can be described by =1

the repeated application of & 2 29 transfer matrix~'|i'j with

i,j=1,2,...,2.(5) In general, one should take into account +(1_td)ZN(X)): (10
multiple one-basis mutations per time stepThis is con-
tained in the original Eigen model as the rate matily has

all nonzero off-diagonal entries. Nevertheless, we will for-

mulate the hypothesis that the transfer mafﬁpf can be
reduced to another matriX;;, which allows only single-

basis m_utatlon per time step;The _reason is Mgathas a The interpretation of the above relation is simple. At time
much simpler structure thaf;;, since almost all off- N+ 1, the fraction of individuals with sequentgis equal to
d|agonall elements are zero. We will prove below that_ using1—td) times the original concentratiofy(x) (this corre-
the one-jump formulation of the system does not modify thesponds to the individuals who have not experienced any mu-
physical picture that emerges from the model. In fact, allowation), plus the fraction of individuals with Hamming dis-
ing more than one mutation per time step corresponds tgynce equal to 1 respect towho, after reproduction, have
taking higher powers ofjj, as one can easily see. All our tated tdl,. This fraction is given by Zy(x+€1). More-
results can be associated, howe(sme beloy, to the behav-  gyer, we have chosen the origin as a favored sequence, that
ior of the set of eigenvectors of the transfer matrix, wh|chis, the population ik=0 is amplified by a factoa>1 with
does not depend on the power Bf we actually take into  regpect to all others. This hypothesis is nothing but a simple
account. , , mathematical way to impose thatsingle MS |, exists.
We finally note that, without loss of generality, one can | thjs framework, the existence of a quasispecies charac-
takeb=1, apart from unimportant multiplicative factors.  grized by a unique MS corresponding to (Q,0.,0) de-
pends on its selective advantage with respect to other se-
V. THE MODEL guences, i.e., on the value af We thus expect to find
quasispecies formation arouihglif a is larger than a thresh-
Let us consider d-dimensional hypercubic unitary lattice old a,.
0={0,1}% representing the configuration space. For math- Roughly speaking, this transition can be equally inter-
ematical convenience, we will assume to have periodigreted in a different context. Let us indeed consider a di-
boundary conditions in all directions, even though this hy-rected elastic polymefa line) wandering in, directed
pothesis is not essential to the physics of the problem. Eachiong the “time” axisN, and subjected to an attractive po-
side of () is made of only two points representing binary tential located at the origif. If the potential is uniform irN,
units. Each point of) has a one-to-one correspondence to ahe energy gain per time step located at the watt 3. If we
sequencd; (i=1|Z]) since the cardinality of is equal to introduce a vectoh® e Q, we can use it to identify the
the number of points of). We formulate the implicit hy-  position of the polymer at each time stepThe elasticity of
pothesis that all individuals of the population have the samghe polymer, in a discrete geometry, is usually described by
sequence lengtt. restricting the one-step polymer fluctuations to be smaller
On each sitexe () we have a variableZ(x) correspond-  than a fixed threshold. In the literature this constraint is usu-
ing to the relative concentration of individuals of wild-type ally called restricted solid-on-solid condition, and means that
lx. Equivalently, we can interpref(x) as the probability to  |h()—h(~1)| can be 0 or 113].
find the sequence, in the total of the population. At each  |n a continuous formulation, the polymer statistics is as-
time step a fractionte[0,1] of the population of the same sociated to a restrictefl.e., with fixed extremespartition
wild-type reproduces incorrectly and their sequences changginction (here “s” is the continuous analog dfl)
one basis amongd and transform itself into a new set of h(s)=h s
individuals I,. In our usual probabilistic interpretation, z(h,s):f D[h’]exp{_lgf ds’
gives the probability that the M§, transforms intd . h(0)=0 0
Since there are bases for each sequence, the probability
that a mutation takes placetid while 1—td is the probabil- +V(h',s")
ity of exact replication. In other words,-1td is the fraction
of the populationZ(x) that survives evolution. We need to
consider pairsq,t) such thatd<<1. This is not a limitation In general,V(h,s) is a random potential distributed accord-

where we have introduced the unitary vectetd as those
having a “1” bit asith element ifx has a “0"” in the same
position and vice versa. The above equation uniquely defines
the transfer matrixT;; as Zy;1(X)=T2Zn(X").

KO») h'(s’' 2
2[ s/ (S)]

’ | (11
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ing to a given densityDPRM problem. In the discrete for- T s dominated by the spectral radius, that is,
mulation, we introduce a Hamiltonian with short-range uni- z, _ ;(x) ~& Zy(x).
form interaction It is worth considering some simple mathematical pre-
liminaries that will be useful in the future. A straight inves-
tigation of the transfer matrix shows that it is definite posi-
tive and irreducible, and then, as a consequence, the Perron-
Frobenius theorem on finite matrices appligs4]: the
as our potential is localized at the origin and is attractive spectral radius is positive and nondegenerate, and corre-
that is,V(h(M,i)= —U &, o. The continuous partition func- sponds to a positive, unique, eigenvector.
tion then becomes a sum over all possible realizations of the Due to the high dimensionality of the systdrecall that
restricted polymer between 0 ani[12] typically d~10>#in a virus sequendeit is not convenient to
use this form of the matrix for numerical investigation.
_ 0 To this aim, we observe that the system has a symmetry
ZN(X)_% exp{— Hn(th} ")/ T} (13 with respect to any change of “1” and “0” bits in a given
sequence. In other words, if two pointgndy of () have the
The above sum completely specifies the state of the polysame Hamming distance from the MS (0,0.,0) they are
mer at a given temperaturg, or equivalently, at a given completely equivalent. The transfer matrix is in fact com-
potential strengthJ. By general considerations, we know pletely invariant in this case under permutation of the two
that in the thermodynamic limit the polymer has a phasepoints.
transition from a localized into a delocalized state, depending Therefore the partition function must be invariant under
onT, or, equivalently, orJ [13]. As we will discuss below, rotations in() and we can restrict ourselves to study its radial
this transition is perfectly defined only di~x, as the car- dependence only, i.eZ(x)=Z(|x|) = Z(») where we have
dinality of € is finite for every finited and thermodynamic definedv=Dy(x,0). It is a simple combinatorial result that
limit does not hold. the number of points of) with the same Hamming distance
There exists an interesting mapping between Eigen's’ from the origin is given byM =d!/[(d—»)!v!].
model and the statistical mechanics of a directed polymer. If we define a new vector a@y(v) =X, -, 2y(X) we can
For instance, in our case, a simple look at the partition funcequally study our eigenvalue problem in terms of a new
tion (13) shows that it is mathematically equivalent to the transfer matrixS defined asPy, 1(v)=SPy(v). It can be
concentrationZy(x), which identically satisfies the recursive found by observing that
relation (10), once we have introduced the definitions
a=expU/T) andt=exp(—J/T). That is why we implicitly
used the same notation for the concentration of individuals
and the polymer partition function.
As an example, let us suppose that for a giver{aed,t}
the polymer is in the localizettelocalized phase: this can +(1-td) 2, ZN(X)), (14
be equivalently expressed by saying that evolution brings hd=v
sequences preferentially close (@part from the master se- \\here the last term in parentheses is simply given by
qguencely. Th.erefore thg error threshold transition in _the 1—td)Py(v). By definition, Zy(x+€e?) is of the form
sglf—_reproducuve model is r(_aduced toa search for the critica J(X) with |x| = v+ 1 or [x|=»—1. Hence, after some alge-
pinninga necessary to localize the directed polymer for fixedp,.o \ve find that
values ofd andt. The error catastrophe transition will then ’
be perfectly understood in the general context of thermody- _
namic phase transitions. Even though we will concentrate ; Zy(x+eV)=(v+1)
our study on the simplest case of a single peaked fitness, it is =
worth mentioning that the same formalism applies in more

N
(i) =2, (IIh=h = U800, (12

Pn(v)=[1+(a—1)dscl+

d
i)
lx%y ;1 tZy(x+eh)

> ) Zy(x+e)

Ix=v»

realistic situations, for which we are forced to consider a +(d—v+1) 2 . Zy(x+e).
qguenched bulk potential, as in Ed.1). Generally speaking, XI=v=
studying the dynamics of the quasispecies model turns out to (15

be not a simpler problem than DPRM. ) o ) ) )
By using this identity we can show that the recursion relation

VI. THE EFFECTIVE MATRIX for Py(») reads
In order to calculate the partition suf@3), we must first ~ Pn+1(»)=[1+(a—1) 8,5l (1—td)Pn(v)
d . .
solve_; a 2% 29 eigenvalue E)roblem associated to the transfer +Ht(r+1)Py(v+ 1)+ (d— v+ 1)Py(v—1)],
matrix T, Zy,1(X) =T Zy(X').
As we are interested in the stationary statdNato, we  ith
do not need to find the whole spectrumTtut its spectral

radius(i.e., the maximum eigenvalue as a function of the Pn(v)=0 for v>d. (16)
free parameter§a,d,t}, only. ¢ is the only significant con-
tribution to the free energy densityper unit length We can then study the system by means ofeffiective

f=limy_.—In(H—TS)/BN. At large timesN, the action of (d+1)X(d+1) matrix S defined as
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a(l1—-td) at 0
td (1—td) 2t

1.10

2t (1-—td) td 1-087

0 t (1-td) T 1.0+
17 ¥
1.04-

It is easy to see th&andT are completely equivalent to our
problem, since they have same spectral radius, as it turns out
from very general results in group thedr5]. As an advan- , f
tage,S is certainly more suitable for numerical diagonaliza- 1007 , : . : . ,
tion respect tor.

What is more important, however, is that we can use the
effective matrix to calculate some accurate upper and lower FIG. 1. The maximum eigenvalue of the transfer maTiplot-
poundg fore. Thi.s is aconsequence of a theorem on p':’Sitiveted vs the selective advantagdor d=100,t=0.003. The full line
ireducible matrices: it states that the spectral radiis) of  has heen obtained by numerical diagonalization of the transfer ma-
a positive matrixA=a;; satisfies the inequalities trix. Circles represent the analytical resulp to orderO(1/d%), see

Eq. (41)]. The dashed lines are the upper and lower boundg for
obtained from the transfer matrisee text

1.024

min Y, aj<e(A)<max> aj, » . .
T T In fact we deduce tha¥/d finite, e >1 and that in the limit
d—o the spectral radius is bounded between two values,

converging to

1
e(S)—1t if a<——

minjzi aijie(A)imng a . 1—td’

_ 1
In summary, we find that e(S—a(l-td) if a>3—. (20

This result indicates thah=a,=1/(1—-td) is the critical
value of the pinning we need to localize the polymer at the
1 as<(l-td) ! origin for any fixed set of parameter3 ,J). It is intuitively
a(l1-td) a=(1—td)"* (18) clear that, rigorously speaking, we cannot have a phase tran-
' sition at finited, since finite is the cardinality d2 too. Only
in the limit d— oo do the polymers have a finite probability to
completely delocalize from the defect; at any finite dimen-
while the upper bound is estimated as sion it can wander up to a distance of the ordedaven at
N—o. Naively speaking, we can say that, at lar@eite)
dimensions, and if the pinning strength is not big enough, the
( 1—(d—2)t polymer is “rough” in the sense that it can visitl acces-
cca(l—td)+td as— g sible configuration space up to the maximum size allowed
for that fixedd. On the other hand, in the “pinned” phase,

(9=

142t ac 1-(d=2)t 1+2t } the transversal localization length within which the poly-
e(9)=<{ 1-td '1—-(d-—1)t mer is confined to the origin is independent on the linear size
1+ 2t N and is always finiteleven atd—=). The two different
a(l—td+t) ae md} behaviors take place at a given characteristic valye(or

equivalentlya.) of the pinning potential. Later on we will
\ a(l-td)+td a>d. further discuss this problem and its implications in the bio-
(19 logical context.

It is worth noting that, from simple inspection of the ef-
fective matrix, one can also get some information about the
distribution (or concentrationof individuals in the configu-

The result is shown in Fig. 1 where the two curves correfation space. This can be easily achieved by the knowledge
sponding to the uppes . (S) and lower bounde _(S) are  of the eigenvector associated to the spectral rag{&. We
plotted(dashed lines From the above inequalities we imme- consider the sum of its componemr,\l=2§:0PN(v), and
diately find some interesting results concerning our systenfrom the above iterative relation fd?y(v) have
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d
My41= 20 [(a—1)6, 0+ 1][(1—td)Pn(») +t(v+1D)P\(v+1)+t(d—v+1)Py(v—1)]

d d
=(a—1)[(1—td)Pn(0) +tPy(1)]+(1—td) ZO PN(V)-I-tZO (v+1)Py(v+1)

d d
—tZO (v—l)PN(v—l)—HdZO Pn(v—1)

d
=(a—1)[(1—td)Py(0) +tPy(1)]+ Z}O Pn(v). (21

Apart from a constant multiplicativénormalization factor,  particular with respect to the origin of the phase transition.

we find, in the thermodynamic limil— oo, that The simplicity of our model fortunately allows an exact so-
lution, which is, however, nontrivial, due to the high dimen-
e a1 sionality of the system.
m=-"71"a - (22) To this aim we first need to simplify the transfer marffix

by means of an appropriate transformation. As the system is
It is easy to prove that the inverse f gives (apart from a defined oM ={0,1}¢, we use a discretized transformation to
constant factorthe fraction of the population at the origin achieve the result. We then introduce the following dual
[that is with MS equal to (0,0 . .,0)). Infact a simple cal- SPace representation of the partition stifx):
culation shows thatn™ 1< P(0)/= ,P(v).

The dependence ah on the pinning strengtla is de- _ _1yxk

picted in Fig. 2 in a semilogarithmic scale. We see that ZN(X)_k:{EOl}d( D™ 2w, 23
m~29 for a<a,, i.e., the fraction of individuals with MS '
equal to0 is 279, In other words, the origin is not, in this and its inverse
situation, a privileged site, as all individuals are equally
likely to be found in{}. In the opposite situation, a>a., 1
we see thamm is approximately given by 1. This means that Zy(k)=— 2 (—1)*kZy(x). (24)
almost all of the population shares the same sequence, the 2dx:{0,l}d
quasispecies is well defined, and evolution has reached a
stationary state around the master sequence (0,00). Re-  The dual space is obviously identical®and the Kronecker
markably, the transition appears again to occur adelta is defined as®, o=y o(—1)*%

a.=(1—td) "L A rapid inspection shows that this representation implic-
itly contains periodic boundary conditions in all directions.
VIl. DUAL SPACE APPROACH In the dual space the transfer matfiixreads

The direct investigation of the effective transfer matrix a1
has given some insight into the physics of the problem, in Zn1(K)=5(K) Zn(K) +—5- > s(q)2\(q), (25
2% g=foy¢

:gm‘e‘*”’j ] with s(q) =t=% ,(—1)%+1—td.

Our goal is then to solve a%Himensional eigenvalue
= 507 " problem for the dual transfer matrik acting on the right-
% 40+ r hand side of the last equation. In the liMit> the system
> 30- L reaches a stationary state and in this regimis dominated
2 e L by its spectral radius. We can then write that in the ther-

104 i modynamic limit 2y, (k) =& Zy(k) =& Z(k), and
ol e
1.0 1.2 1.4 1.6 1.8 a—1 1 2
a Z(k)= i sosk)2 Z(q)s(q). (26)

FIG. 2. IMm(a)] is plotted vs the selective advantagefor .
d=100,t=0.003. Ata,=(1—td) ! the sharp jump indicates the L€t us focus, for the moment, on the computatiorepfind
presence of a depinning transitigwhich is well defined only at define a new constar®= X, . os(k) Z(k). By multiplying
d—o, as explained in the textNumerical diagonalization: full both sides bys(k), and summing ovek, we finally arrive at
line. Analytical result: circles. the equation fok:
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a—1 s(k) By using a Feynman-like representation, we have
2
24 Jjoye £ S(K) @0 1 1 -1
S =z (1——@ (-1)%
or k={0,1 e—s(k) Ao As =1
s & 28) =1fwduF(u,t,s,A), 32)
a—1 24 {5y e—s(k) Alo

It is clear that any attempt to directly calculate the sumwith A=(e¢—1+td)/e, and
appearing in the above formula is a very hard task, and we
are forced to rely on different approaches. First of all we note 1 4
that, sinces(k) can take values of kind 42nt (with Fut,e,A)= > exp{u(A—tE (—1)ki—1”. (33
n=1,2,...d) in d//[n!(d—n)!] different ways, we can keh & =1

recast the sum as follows: . . . .
By noting that the sum in the exponent easily factorizes, we

a 1 é d € get

—=— _—. 29
a—1 2d5=p\n/e—1+2nt (29 d d

> ex itz (—1)ki|= Zcosrsu—t” (34)

Despite the simplification, the last expression is still too dif- Keq Ae i1 Ae/ |’

ficult to solve exactly, nevertheless it can be used to study

the structure of the eigenvalues of the transfer matrix. In factand therefore, after a change of variable in the integral, the

the rhs of the above equation hds-1 singular points in  eigenvalue equation takes the form

e=1-2nt, the largest of which is located at=1. For each

interval between any two singular points, E29) behaves as a

a continuous function of and it is monotonically decreas- a—_lzsf

ing, and then invertible. The solutions to the above equation

are given by the intersections of this function with the hori- ) ] ) ]

zontal linea/(a—1). There ared+1 intersections, each of A féw remarks are important at this point on the meaning

them corresponding to one eigenvalue of the transfer matri@"d validity of the above expression. It represents, for each

As the largest singular point is located &t 1, we have a fixed set of parametersr(J,d), an integral implicit relation

e~ (e~ 1+t cosut) ]%du. (39
0

Above we have anticipated that no sharp phase transition ¢
occur at any finited. In performing the limitd— o we must
be sure that goes to O at least linearly in d/in order to
preserve the probabilistic interpretation of the systeecall
that tde[0,1]). If, for instance, we approach the critical
state on the manifolad =1+ 2t, that is,e—1 linearly int,
we have, from Eq(31), thata—a.=1/(1—td). This again

unique eigenvalue larger than 1, and it corresponds to thBetweene anda. Nevertheless, it is not equivalent to the
spectral radius off . We then concentrate, in what follows, Ofiginal series solutiofi28) of the spectrum of since in the
on the solution of Eq(27) with the restrictions>1, disre- above procgdure we have |mpI_|C|tIy assumeq that the integral
garding all other roots. It is worth noting that in one simple '€Presentation was mathematically well defined. In order to
case the sum can be explicitly performed. In fact if we taked0 this, we must require that the integr@2) converges.
e=1+2t, the sum reads This is indeed the case if and only3fi_,d(—1)X<As, or
equivalently, ife>1. If e<1 the integral diverges and no
d /d\ 1 20+1_1q real solutions to the above equation can be found. As a con-
Z (n 1tn_ d+1 (30 sequence, we can use E85) to calculate the spectrum af
n=0 corresponding to eigenvaluesl. From the previous argu-
and Eq.(29) can be solved foa giving ment, we know that there exists a unique eigenvalue larger
than 1, and it corresponds to the spectral radius. In conclu-
2t(d+1) sion, the unique real solution i of Eq. (35) is the spectral
a=1+ . (31 radius of the transfer matrix. Moreover, since the integral
(1+2t)(2—2"%—2t(d+1) diverges at =1, when the attractive potential at the origin is
omitted (i.e., a=1), the maximum eigenvalue must be uni-
<"}ﬁry too. Then the free energy densityvanishes and we
attain a delocalized phase, as expected.
The implicit integral can be expressed in terms of known
mathematical functions. After successive integrations by
parts we have thdhere §=(e—1)/t]

proves that, at least on the above manifold-¢H) ! is the E _a :i( — i 1— d__l —_— #
critical selective advantage separating the two phases. ea-l to\" o+2( o+4 o+2d-2
1
VIIl. THE EXACT SOLUTION X\ 1= =5q] } ) (36)

Let us consider the eigenvalue equati@8). The idea is
to introduce a new representation to simplify the formula.and recalling the definition of the hypergeometric series of
The final result must be expressed in implicit integral form. negative argumeritl6]



m

F(—m,b;c,z)= >,

n=0

(_m)n(b)n Z_n
(€©)n nt’

with (a),=a(a+1)---(a+n—1), we finally arrive at the
result that

37

a -1

e—1
a—1 ¢

11
ot Tl

—F|—d,1; (39)

We immediately deduce thafrecall
m l1=F(—d,1;(e—1)/2+1,1/2).

Let us defind (d;e,t) the integral in Eq(35). I(d;e,t) is
a monotonic decreasing function df This result can be

definition (22)]

easily proved by using the integral representation of the hy-
pergeometric series. Physically we are interested in the be-

EXACT SOLUTION OF THE QUASISPECIES MODEL IN ...

4535

1000

= 100

havior of the system at large dimensions, and in this regime

we can use a Laplace saddle-point approximation of the in-
tegral solution. A detailed analysis of the asymptotic devel-

opment ofl(d;e,t) at larged needs, however, particular

attention, since we should properly take into account the

conditiontd<1. This means that both the limitb—o and
t—0 must be performedimultaneouslyn such a way that
a=td is constant. We are implicitly assuming thagoes to

0 linearly in 14, but we would obtain the same final result if

td—0 for d—oe.

Let « be equal tad, a quantity that must be kept finite
during the calculation. We see tHg; ¢,t) can be written as
Jodug(u)exddf(u)], with

e—1+a
f(u)=In[cosKu)]— ——u,
(39

d
g(u)= p

Since fore>1 the maximum ofg(u) is located at the
extreme of integratioru=0, the integral can be well ap-
proximated, at largel, by expanding in a McLaurin series
the integrand. At first order in d/it reads

% 1
|~ JO dug(0)exd d(f(0)+ 1" (O)u)]=——-

(40)

FIG. 3. The critical dimensiod, plotted vsa for two distinct
values oft. Lower curveit=10"2; upper curvet=10"3. Full lines
represent the functiom,=t %(1—1/a) (see text Circles and
guares: numerical data from the transfer matrix.

B 1 a(td)?
£=max 1,a(1_td)+am

1
O @ , (42

since we know from the above argume(ftem the effective
matrix) that the spectral radius cannot be less thanal>fL.
This result can be finally compared with the exact calculation
performed by numerically finding the spectral radiugdbr
a given set of parametefsl,t,a}, and the two curves are
plotted in Fig. 1.

In the limit d—«~ we have

1 a(2—a)(td)*
d? (a—1)%[1—(td)?]

g™ =max1la(1—td)}, (43

a result that coincides with that obtained from the analysis
we performed on the effective matri& Hence the critical
selective advantage for the MS (0,0 . ,0) tocreate a stable
quasispecies around it &= (1—td) 1. In other words, as
we will clarify below, a. defines the error threshold for qua-
sispecies formation. Alternatively, one can arrive at the same
result on the basis of the convexity propertylods a func-

More precisely, if we take into account higher powers andion of d, as shown if[17]. Figure 3 shows the critical di-
the relative error, after some more algebra we arrive at th?nensiondc as a function of the pinning for two values of

approximate result:

1 a 1 . (td)? 3(td)*
ga-1 e-1+td d(g—1+td)® d%(e—1+td)®

1] 15(td)® 2(td)* ] ( 1)
+ = - +0| =|.
d¥ (e—1+td)” (e—1+td)® d*
(41

t. The coincidence between E@.3) and the numerical result
is remarkable.

IX. THE STATIONARY “GROUND STATE”
EIGENVECTOR

In order to have a full solution of our system, we still
need to calculate the partition suf®3), or more precisely,
the eigenvector corresponding to the maximum eigenvalue
we have studied in the previous paragraph. Therefore, let us

If we are interested in the unique real solution of thego back to the recursion relatig@5) in the dual space. Dis-

above algebraic equation, E1) can be inverted for the
maximume. The final solution, up to orde®(1/d%) reads,
for ae[1>)

regarding, for the moment, the normalization condition, we
have Z(k)=Q(a—1)2 9% (e —s(k)). In the direct space, it
reads
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20-Q 1S (—apk—s (44) P(V)=Q(a—1)<d)deue(€1“‘”“
20 K5h e—s(k)’ oo

X [sinh(ut)]*[coshut)]9~". (48)

The summation of the series appearing in the above formula

can be done following the same general procedure as beforeN€ constanQ can be fixed by normalization, that is, if we
that is. ate>1 we have impose that Z(x) be summable, we must require that

E‘i:OP(u)zl. The last calculation is easy to perform, in
fact, 29_ (%) [sinhut)'cosh() ] *=exp(td) and thus, af-
ter integration, we get the result thaEfZOP(v)
=Q(a—1)/(e—1). The normalized solution reads

-1 x-k td -1
— =E(1——i§l<—1)ki)

k:{O,l}d S_S(k) keQ

1 (o d
=§f0 duG(u,x,t,B), (45) P(r)=(e-1)|

X OCd —(e—1+td)u t d'[ D%
with B=¢—1+td and fo ue [costuy)]*[tank(ut)]

(49

¢
G(U,X,t,B)ZkEQ (— 1)X‘kex;{u<—21 (—1)ki—1) } At genericd it is not possible to perform the above integral,
© a (46) which is convergen¥e>1, but we can restrict ourselves to
study the form of the solution at large dimensions.
Since one may equally characterize the depinning phase
With respect to the above case, we now have an additiondfansition in terms ofU or a, we can study its order by

term in the sum ovek e Q). After factorization, we find that considering the discontinuities of the partition sumainAt
d—o the maximum eigenvalue is defined by E43). By

inserting this expression intB(v) we simply find that the
partition sum is &° function in a, that is, the phase transi-
d tion is of first order. This is also clear if one looks at the

E (—1)X"‘ex;{ U_tE (—1)ki) shape of Inf), which can be considered a sort of “order

Ke Bi=1 parameter,” near the critical poimt, (see Fig. 2. Moreover,
from very general argumenf43], we expect that the typical
length &, within which the polymer is confined around the

-11 (_1)kxieXF<(_1)ku_t). (47)  botential, diverges at the critical point s ~|a—a] "
i=1 k=0,1 B with a given characteristic exponent. In a sense, the variable

v appearing in Eq(49) can be considered a sort of external
control parameter for the system described by &d) at
equilibrium.

In this form the formula is still too hard to allow a simple  |n order to calculate the critical exponent we can in-

summation, but a rapid inspection shows how to simplify thetroduce the generating functigb(\) associated t®(v), as

problem by taking into account the symmetries of the sys-

tem. In fact we know that the partition sum must be the same

for any two points with equal Hamming distance from the

origin. Therefore we can concentrate on studying only the d

“radial” function P(v) wherev is the Hamming distance G(\)=(eM)= D, P(v)e"". (50)

from (0,0 ...,0). Inpractice this observation allows us to v=0

neglect the order in which bits “1” and “0" appear in Eq.

(47). What is physically important is the number of bits of .

each kind that are contained in a given sequence of totalne various momenta,,=(»™) can be calculated from

length d. If there arev bits of kind “1,” that is, if the  G(\) in the usual wayZy,=d{™G(\),~o. In order to study

Hamming distance of the respective sequence,isn the  the behavior of, we need the knowledge of the fluctuations

product on the rhs of Eq47) will be presenty factors of ~ Of the polymer around the origin, and therefore we need the

kind exp(t/B)—exp(~ut/B)=2sinh(itB) and d— v of kind ~ second cumulani,=¢,—¢%. We thus calculate the con-

expUt/B)+exp(—ut/B)=2cosh(t/B). Finally, as the number nected generating function I'(A\)=InG(\),  since

of ways we can arrange bits “1” in the total of d bits in Mm=a§m)l“()\)|>\:0.

d!/[(d—w)!v!], we can write that From the above exact formula, we can write that
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G()\)=(s—1)f:duexp(—(s— 1+td)u+din{cosiut)[ 1+ KtanHut)]})

d o0
=(s—1);fo dxexp{d

whereK =e* andx=ut. If we are interested in the largkbehavior, the integral can be estimated by saddle-point methods.
The function at the exponent is maximumxr0 if e>1, and then

e—1+1td
In{coshx)[ 1+ Ktanhx)]}— Tx

], (51)

600 1)dde p{d (K e—1+td| 1-K? 2} (e—1) N (1-K?)a? 1
=(e—1)— Xex - X =(e— =
*alo 2 e 1+ a(1-K)  [(e—1+a)/a—K]? d
(52)
[
Corrections to the previous formula are of the or@¢/d?). d e—1 (1—-adt?
By applying the definition of'(\), we finally find that > POy =27 ,
=5 e—1+td 1-a
(56)
td 2(td)® 1 1 e 1
& (e—1) d td

(53

1 The partition function shows an exponential decay as a func-

(_> ) tion of v. The mass gap[13] is therefore given by

d? InN[1+(e—1)/a]=(¢—1)la, close to the phase transition.

Since the transversal correlation length is usually defined as

As expected, the fluctuations around the average have the inverse of the mass gap, we again recover the result that,

power-law divergence at the critical poist=1. Sincee at the critical pointy, =1.

goes to 1 linearly witha—a,., we deduce that the critical A more refined expression of the partition function at

exponent isy, =1 atd—oo. large d can be obtained by directly considering a saddle
It is also interesting to look at the shape of the partitionpoint approximation of Eq49). Without entering into math-

function in ». From the biological point of view, it tells us ematical detailgsimilar to those employed in previous cal-

how mutants of a given MS are distributed around it to formculationg, we see that the integral in E¢49) is dominated

a quasispecies. If we restrict ourselves, for simplicity, to thedy the region close ta* =0. By expanding the integrand

leading term in 1d in Eq. (52), we must inverse transform it aroundu* and integrating term by term, we finally find

to get the real space solution at first order. To simplify the

_(td)? _2(td)5(8—1+4td)1
(e—1)2 (-1 d

M2

calculation, we assume that=i » is a complex number, and B a Y
this allows us to write P(V)_(S_l)(,,) de—1+a) pon s AU
& erd in 1 + o T( +3)1+o ! (57)
P =(e—1 e ' — ——I(»+3)7+0| | |.
(v)=(e ) . 7 e—1+td(1—e") 2d(8—1+a/)3 d d2
(54)

In Fig. 4 we compare this approximate regiply only retain-

By analytic continuation in the complex plane=z be-
comes a complex variable and the resulting integral can be o

calculated by means of the residue theorem. The integrand o187 R
has a simple pole at* = —iln[1+(s—1)/(td)] and to apply 0147 207 T
Cauchy’s lemma we must close the integration path in the 0127 T10™ Fr
semiplane Iz} <0. After having calculated the residue in 20107 . NT
z*, we find that Res{*)= —ia[1+ (e —1)/a]*"1. Hence, foosy o 10 20 30
0.06 Y =
" 2 e—1\ "0+ 0.04 1 -
=N — (e — + — i N e=1.1, d=100, t=5x10"°
P (v) Ntd (e—=1)|1 ta ) 0.02 1 100, t=5x10
0.00 LIRS e ey
277(8_1) 8_1 o 5 10 15 20 25 30
= _— f— + [ v
Na—1+td exp{ vin| 1 - ” (55

) o ) FIG. 4. Comparison between the two real-space forms of the
where N is a normalization factor. It can be easily calculatedsolution P(») at the first significant order in d/ The dashed and
by noting that the sum involves a truncated geometric serieshe full lines correspond to Eqé55) and (58), respectively.
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ing the first term in parenthesewith P(Y)(v) given by Eq. lattice (that composed of different rowkas a length equal to
(55). The coincidence of the two curves is good umltev,  that (d) of the sequences, while the other one is semi-infinite
i.e., in the physical rang@ecall that by definitiorv<d). In in one direction, as each column can be associated to the
fact it is possible to show that E@57) is a monotonically state of the system at timke The final state, in this geometry,
increasing function of for v>d, while the exact function is is therefore associated to the properties of the lattice edge,
always decreasing. The minimum of the approximating funcwhich indeed represents the state of the system Biftgen-

tion is found indeed forv~d. More precisely, if we only erations. If each site along the binary chain is exactly copied
take the first term in Eq57), a rapid inspection shows that with probability g, independently from other sites, the repli-

it can be rewritten as cation matrix takes the form

PH(v)=(e—1)

d! a @ v 1—q) @ Zk1okob2
) (61)

(d-»)l d(e—1+a)\de—1+a) Wij=A d(T

(e—1) / e—1\""

e—1+a\ 1+ a ' (58) This represents a transfer matrix of a two-dimensional Ising-
like system with nearest neighbors interactions along the
“time direction.” The Hamiltonian corresponding to Eq.

the last approximation being valid if<d. We then see that, (61 has, however, a very complicated mathematical form

apart from inessential factors, Eq&5) and (58) give the

same result only ifv<<d. At larger v, Eq. (58) shows the

presence of power-law corrections in the exponential decay N—1 d

of the partition sum. — BH=~— izo ’qu U}U}H

~N'

Nd
+INA(L) |+ —-In[a(1-a)],

(62)
X. COMPARISON WITH PREVIOUS RESULTS
AND CONCLUSIONS
Tarazond 10] numerically solved the system for various fit-

We are now in a position to compare our resul{'f W'th.theness landscapes; , and discussed the results with respect to
general approach by coming back to the usual “quasispe;

cies” notation. The copying fidelity in a given reproduction the original quasispecies model

: > L Apart from the intrinsic difficulty in solving problems de-
process has been defined in our model bytd, while in the . o . :
original work [6] it was indicated byqd [see also Eq(7)]. scribed by Hamiltonians of the kin(b2), there is a subtle

Therefore, the first result of our work has been to show thaErOblem contained in this formulation. The actual state of the

o . . S ystem afteN generations dependsily on the structure of
the critical threshold for quasispecies formation is given bythe layer at the edge of the square lattice, that is, on the spin

configurations at theNth column. Therefore, as one may
1 Ina expect, the error threshold transi_tion cannot be fully u_nder-
aﬁm =q7 9 d.=-— o (59 stood in terms of the l_Jqu properties on the square lattice, as
q already pointed out if10]. We thus need the complete
knowledge of the structure of the lattice surface, and not of
which coincides with Eq(8). the bulk, to solve the original Eigen’s model. With the
Let us now discuss similarities and differences between euthaisser mapping, there is no hope of accomplishing that
our mapping and the previous approaches. In the above citggbal, in general. The fact that the critical properties of the
work, Leuthaisser introduced a mapping of Eigen’s model toquasispecies model are associated to surface structures is, in
a system at equilibrium. Briefly, we describe the mapping a sense, conserved in our mapping, as we have also associ-
follows. Let us consider again E¢4) with discretized time  ated the error threshold problem to the statistical mechanics
k, representing “generations”of macromolecules. If we de-properties of an interfacelike object. On the other hand, our
fine the vectorX(k) = (x;(k),x(K), . . . Xd(K)), represent- mapping to the directed polymers’ statistical mechanics
ing the set of the relative concentrations of the macromolseems to be more natural and able to better clarify the deli-
ecules at time&k, Eigen’s model can be easily rewritten as cate mechanisms involved in the error-threshold transition.
In conclusion, we have analyzed Eigen’'s model in the
simplest situation characterized by a single-peaked fitness.
X(k)=WHX(0). (60 The main issues of our exact solution can be summarized in
three main points. First, we have proved that, in the limit of
As in our case, the problem is then reduced to a linear systeinfinite sequence lengths, the error threshold phenomenon
associated t@V. This matrix, actually, can be thought of as a is associated to a first-order critical phase transition. More-
transfer matrix of an equilibrium system. In fact, if one con-over, the typical amplitude of the quasispecies around the
siders only binary sequencesmade, for instance, af Ising ~ MS diverges with exponent, =1 at criticality. Numerical
spins (@1,0,, .. .,04), the evolution of the system can be simulationg10], seem, however, to indicate that this picture
represented in a square lattice geometry. One side of theo longer holds for more general situations. It would be ex-
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tremely interesting to use our mapping to investigate these&uations from point to point, and with the help of the directed
other cases as well. Finally, we have proved that the criticapolymers theory, the present study can be extended.
selective advantage for quasispecies formation depends ex-
ponentially on the sequence length ACKNOWLEDGMENTS
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